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Abstract

Optimal Pricing and Capacity Planning in Operations Management

Dehui Tong

Doctor of Philosophy

Graduate Department of Joseph L. Rotman School of Management

University of Toronto

2011

Pricing and capacity allocation are two important decisions that a service provider needs to

make to maximize service quality and profit. This thesis attempts to address the pricing and

capacity planning problems in operations management from the following three aspects.

We first study a capacity planning and short-term demand management problem faced by

firms with industrial customers that are insensitive to price incentives when placing orders.

Industrial customers usually have downstream commitments that make it too costly to instan-

taneously adjust their schedule in response to price changes. Rather, they can only react to

prices set at some earlier time. We propose a hierarchical planning model where price decisions

and capacity allocation decisions must be made at different points of times. Customers first

sign a service contract specifying how capacity at different times will be priced. Then, when

placing an order, they choose the service time that best meets their needs. We study how to

price the capacity so that the customers behave in a way that is consistent with a targeted

demand profile at the order period. We further study how to optimally allocate capacity. Our

numerical computations show that the model improves the operational revenue substantially.

Second, we explore how a profit maximizing firm is to locate a single facility on a general

network, to set its capacity and to decide the price to charge for service. Stochastic demand

is generated from nodes of the network. Customers demand is sensitive to both the price and

the time they expect to spend on traveling and waiting. Considering the combined effect of

location and price on the firm’s profit while taking into account the demand elasticity, our model

provides managerial insights about how the interactions of these decision variables impact the

firm’s profit.
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Third, we extend this single facility problem to a multiple facility problem. Customers

have multiple choices for service. The firm maximizes its profit subject to customers’ choice

criteria. We propose a system optimization model where customers cooperate with the firm

to choose the facility for service and a user equilibrium model where customers choose the

facilities that provide the best utility to them. We investigate the properties of the optimal

solutions. Heuristic algorithms are developed for the user equilibrium model. Our results show

that capacity planning and location decisions are closely related to each other. When customers

are highly sensitive to waiting time, separating capacity planning and location decisions could

result in a highly suboptimal solution.
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Chapter 1

Introduction

In the past decade, there has been a growing consensus among researchers and practitioners

alike that the pricing decisions that induce demand are closely linked with capacity planning

decisions. Pricing decisions influence the demand patterns that form the basic inputs to any

capacity management, and pricing decisions in turn must ultimately be based on capacity

constraints. To improve service quality and to increase profit, integration of pricing and capacity

decisions in practice are necessary, as can be observed in many industries. For example, in the

airline industry where capacity is fixed well in advance and can be augmented only at a relatively

high marginal cost, pricing service (i.e., setting ticket prices) dynamically over time in light of

the remaining capacities has been widely applied as a standard practice. In the fashion retail

business, it is common to find that retailers set the prices of goods differently according to

their colors, with due regard to the stock of the items and the expected demand. In the service

industry, the price and capacity decisions often depend on the locations of the facilities.

While researchers and practitioners strive to make better decisions, the need for improve-

ment never ends. The pricing and capacity allocation decision varies from industry to industry,

so that there is no one universal solution that fits all situations. Making decisions on price

and capacity is a complicated process, with other management decisions that need to be made

at the same time, for example, on production quantity, inventory control, and the locations of

service facilities.

1



www.manaraa.com

This thesis studies several aspects of the integration of capacity allocation and pricing

decisions in Operations Management. The objective is to study how the integration of price

and capacity decisions can affect a firm’s profit, and how the joint decisions interact with other

managerial decisions. We address the problems from the following three aspects.

We begin in Chapter 2 with the analysis of a demand and capacity management problem

that originates from a concrete distributor. The challenge of the concrete distribution planning

is that the capacity supply and demand are highly imbalanced. On a daily basis, the system

frequently runs out of capacity and thus causes serious delays during peak demand periods, while

during off-peak times it is under-utilized. On the other hand, customer demands are highly

time-sensitive because concrete is a very perishable product and the delay cost is relatively

high.

A general approach to dealing with uncertainty demand under capacity constraints is to

adopt some dynamic pricing mechanism so that the arriving orders are priced according to the

remaining capacity level and other available market information at the time of order arrival.

Price is a variable that can be controlled on a continuous basis. Though dynamic pricing has

been adopted to many industries such as airline, hotel, car rental etc., it cannot be applied to

firms like the concrete distributor with industrial customers. Offering customer price incentives

on a short notice is not effective, since when industrial customers place their orders they have

already deployed workers and equipments for the delivery, and thus the cost to change the

planned delivery time is high. Instead of this dynamic pricing approach, we propose a variable

pricing approach within a hierarchical planing scheme, by pricing service according to capacity

usage time to regulate the fluctuation of demand. At the strategic stage, a portion of service

fee is set according to capacity usage time. Therefore, customers requesting service during

peak times will be charged more, but less during off-peak periods. At the operational stage,

customers observe posted prices, arrive and are assigned capacity slots dynamically over a

planning horizon. We show that a pricing strategy can induce the customers to cooperate with

the firm, such that the demand flow using the capacity over time is consistent with the firm’s

preference. Our computational experiments show that using the hierarchical planning approach

can improve the firms’ operational revenue.

2
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While in some problems we can investigate the interaction of pricing and capacity allocation

decisions directly, there are other problems where the joint analysis of pricing and capacity must

be combined with other management decisions. For example, the parking fee and the size of a

parking lot in a downtown area can be intuitively different than those in a rural area. When a

downtown parking lot is planned, it is necessary to carefully consider the capacity level (lot size)

and the prices to charge with regard to the location to make the project viable and to maximize

profit. Obviously, charging a higher price will result in a lower occupancy, but charging too low

will make the parking system highly congested and may result in revenue loss. Hence, when

a firm considers the location of a new facility, the decisions on pricing and capacity are often

made simultaneously. Two examples of these problems involving location decisions are studied

in Chapters 3 and 4.

In Chapter 3, we focus on several of the most important strategic decisions for a service

provider facing uncertain customer demand, including setting the location of the facility, deter-

mining the service capacity, and choosing the price to charge for service. The service provider

operates a single facility. Utility-maximizing customers are assumed to reside at the nodes of

the network, generating Poisson demand streams. Customer utility is affected by the price,

travel distance and the waiting time at the facility selected by the customer. The unique fea-

ture of our model is, that we explicitly recognize that the total demand generated by each

customer is affected by the degree of congestion at the facilities, which, in turn, is affected by

the choices made by other customers. Thus, the distribution of customer flows is guided by

the equilibrium: the demand rate at a facility depends on the waiting time incurred, which is

by itself a function of the demand rate. The objective is to maximize the total profit of the

facilities. We start with a general G/G/1 system and show that an optimal location exists on

the nodes of a network. Afterwards, we consider a M/M/1 system and analyze the correlations

of the three decision variables. An exact solution procedure is developed for the M/M/1 system

with exponential demand elasticities.

Chapter 4 extends the single facility problem to a multiple-facility one, where customers

have multiple choices for service. We developed models to optimize jointly the three strategic

decisions with an emphasis on customers’ behavior: location of the facilities, service capacities,

3
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and pricing for service. When capacities are limited and congestions exist in the system, cus-

tomers’ decisions are inter-related. Two models are developed: a system optimization model

and a user equilibrium model. In the system optimization model, the firm can assign customers

to facilities to maximize the profit. In the user equilibrium model, customers are self-interested,

the firm maximizes its profit subject to the equilibrium behavior of the customers. We formu-

lated the user equilibrium problem as a bi-level programming with equilibrium constraints. We

discuss the existence of the customer equilibrium and show that the distribution of the equilib-

rium flow can be solved as a convex optimization problem via a variational inequality approach.

We suggest several heuristic algorithms to solve the problem and present a numerical analysis

to study the customer’s equilibrium behavior effects on the firm’s profit. We show that the

price decision is independent of the capacity allocation and location decisions. Our numerical

results further demonstrate that location and capacity allocation can be made independently

when customers sensitivity to travel distance dominates the waiting time. However, when cus-

tomers are more sensitive to waiting time than travel distance, capacity allocation and location

decisions should be jointly optimized to achieve maximum profit.

Combining the three chapters discussed above, we present practical formulations and provide

optimal solutions for pricing and capacity allocation decisions in a dynamic distribution system

and strategic location models. Our objective for developing these solution procedures is to use

them to gain understanding of the relationship between capacity and prices. Though our study

is largely theoretical in nature, we hope our results provide some important insights for real life

managerial problems.

4
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Chapter 2

Variable Pricing in a Capacity

Constrained Just-In-Time Supply

Chain

2.1 Introduction

A central concept of contemporary operations management is the use of pricing to dynamically

match supply and demand. To maximize revenue, joint pricing/allocation schemes have been

widely used by capacity-constrained service industries such as airlines, hotels, and car rental

agencies. Price is often used as a control variable, by lowering the price customers are admitted

for service and by raising the price sufficiently high they are turned away.

A fundamental assumption of such dynamic pricing schemes is that price and capacity

allocation decisions are made at the same time. Customers are assumed to be willing to change

their choices in response to the price when placing their orders. In this paper, however, we study

a revenue management problem where price and capacity allocation decisions must be made at

different points in time. We consider a firm serving industrial customers that have their own

commitments to their workforce and downstream customers. Because the commitments must be

made a long time before orders will be placed, the customers have little flexibility to alter their

schedules when capacity reservations are made. To reduce congestion, the service provider firm

5
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establishes prices that would encourage such customers to schedule their commitments more

evenly over a service period, such as a day. In our approach, the firm determines prices for

alternate supply schedules when the overall demand and preferences for capacity schedules are

known. Then the customers react to the prices and place orders at a later time. Next, the firm

allocates capacity to these orders to maximize its profit. In particular, we study how the firm

should price capacity so that customers behave consistently with a target demand profile, and

as a result the firm can allocates its production capacity accordingly.

The study is motivated by the demand management problem of a ready-to-mix concrete

distributor. On-time delivery is very important in a competitive concrete market that has

little product differentiation. The firm’s customers sign long-term contracts for capacity usage.

Each day, they place demand for capacity that typically peaks at certain times of the day so

that there is insufficient capacity to serve all the customers, resulting in delays in service. To

address the problem the firm could expanse its capacity, but it would be under-utilized during

the off-peak periods. According to common operations management practice, strategic pricing

could be used to improve the dispatching schedule. However, there are a number of factors that

make the problem difficult:

First, customers often have inflexible schedules when placing their orders. Their cost of

changing the delivery times is very high, as normally they have already committed the manpower

and equipment for the delivery time. Thus online dynamic pricing may not be effective in

moving demand away from the peak.

Second, customers may have multiple orders. A customer may request the usage of the

capacity at a set of specific times. Concrete is a special product that requires delivery to be

made according to specified schedules. Thus, deciding which customers should be admitted at

the operational stage is very difficult when the capacity is limited.

Third, deviation from an agreed delivery schedule can be very costly. The short shelf-life

of concrete requires that every step from production to final utilization by the customer is

“Just-In-Time.” The customer has to set up the construction site to allow offloading to start

immediately upon the arrival of the concrete delivery truck. Any delay will incur waiting costs

for customers’ workers and equipments. Ready-to-mix concrete can even solidify in the truck

6
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if offloading is delayed by a few hours.

In this study, we intend to provide an integrated pricing and admission control framework

that applies to problems with similar characteristics. These characteristics include demand

fluctuation, perishable capacity, limited flexibility of schedules, and multiple demands from each

customer. We use a hierarchical planning approach to manage the imbalance of the capacity

and demand. The problem was studied under a monopolistic setting with the consideration of

the special feature that pricing decision cannot be made jointly with the admission control. We

split the problem into two components: strategic pricing and operations control.

On strategic pricing, we study the ability to smooth the expected demand by pricing the

use of capacity over time, i.e., charging customers usage cost according to the time of usage.

We model customers as self-interested with their own utilities that depend on the time of

service, congestion level of the system, and price. At this stage, we study the following two

questions: 1) How should the firm set the prices to induce customers to act such that their

demand is consistent with the firm’s preferred booking limit; 2) what pricing strategy achieves

the maximum profit?

At the operational level, the firm determines whether to accept or reject customers’ re-

quested schedules based on the availability of capacity and expected future demand. Customers

arrive randomly, observe posted prices, and choose a delivery schedule. With a strategic pricing

policy, it is expected that the average demand rate would be more evenly distributed within

the workday. We input this more evenly distributed demand to explore the optimal admission

strategies.

The organization of this Chapter is as follows. Section 2.2 provides a brief literature review.

In Section 2.3 we discuss how incentive pricing may be used to induce the customers to schedule

according to the firm’s capacity. We discuss how to find the booking limit and incentive prices

simultaneously to maximize the firm’s profit. In Section 2.4 we analyze the firm’s operational

problems. We formulate the admission control problem and discuss its structural properties.

Problems of realistic size are too big to be exactly solve. Therefore, we provide an upper

bound and value function approximation for the operational problem. We show the benefits

of the hierarchical planning approach through numerical computations and perform sensitivity
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analysis in Section 2.5. Concluding remarks and further research extension are provided in

Section 2.6.

2.2 Related Literature

Our work is related to research in several areas. The first stream of literature is from the

dynamic pricing area, see e.g., Gallego and van Ryzin (1994, 1997). Price is treated as a

regulator of demand for the purpose of admission control. At the time of admission where

capacity information is known exactly, a firm can use price to open or block some class of

customers to maximize its profit. For a comprehensive review of the literature in dynamic

pricing, see McGill and van Ryzin (1999), Elmaghraby and Keskinocak (2003), Bitran and

Caldentey (2003), and Talluri and van Ryzin (2005). Dynamic pricing in the above literature

has had wide application in the airline, hotel and retailing industries. However, such models

cannot be applied to cases where customers are insensitive to price at the time when the orders

are placed.

We consider a case where pricing decisions cannot be made together with admission control.

Therefore we use a hierarchical planning framework (see e.g., Bitran and Tirupati (1989) for

an introduction of hierarchical planning approach) where decisions are made at both strategic

and operational levels.

At the strategic level, we consider the problem of analyzing and influencing the behavior of

customers at shared resources. This problem has been extensively studied by many different

research disciplines such as computer science, economics, and transportation. For example,

Mirrlees (1971) studies an optimal income taxation problem faced by government or large or-

ganizations with the objective to maximize the social welfare (see, e.g., Boadway et al. (1998)

for a broad survey). Works in transportation research are more closely related to our research.

Wardrop (1952) defines the traffic equilibrium that later serves as a foundation of many re-

search in studying the toll pricing on a traffic network. Smith (1979) provides a theoretical

foundation that guarantees the existence and uniqueness of the traffic equilibrium. Dafermos

(1973) addresses the problem of pricing in a multiclass transportation network. Our work is

8
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somewhat similar to Dafermos’ approach to find the optimal prices. He focuses on toll pricing

that is system optimal, and customers are discriminated by their classes. In contrast, we inves-

tigate a pricing policy that can induce customers to follow the firm’s target booking limit, and

our pricing policy has a simplified structure that is more practical in its application. There are

also some works that focus on price inefficiency in a network of shared resources. Koutsoupias

and Papadimitriou (1999) are the first to quantify degradation in network performance due to

unregulated traffic. Roughgarden and Tardos (2002) later prove that if the congestion cost of

each edge is a linear function of its flow, then the total congestion cost of the routes chosen

by selfish network users is at most 4/3 times the minimum possible total congestion cost. Cole

et al. (2003) further extend the result to price network edges with heterogeneous users. We

have no intent to quantify the inefficiency of selfish routing, which has been well studied. In-

stead, we are interested in finding a pricing strategy that can induce a preferred booking limit

and regulate demand flow to help admission control at the operational level in the context of

hierarchical planning approach.

Our admission control model at the operational level can be viewed as a particular instance

of the general class of network revenue management models that are typically applied to se-

quential reservations for an airline network, hotel, or car rental service. The network revenue

management model studies problems in a stochastic and dynamic environment and answers the

questions of whether a new request to use a set of resource links should be accepted or rejected.

Bertsimas and Popescu (2003) investigate dynamic policies for allocating scarce inventory to

stochastic demand for multiple fare classes in a network environment so as to maximize total

expected revenues. They propose and analyze a new algorithm based on approximate dynamic

programming. The admission control algorithm in our paper uses a similar approach as the

Certainty Equivalent Control algorithm they introduced. The major difference between our

work and theirs is that they treat the demand as exogenously given and independent of price,

while our demand depends on the price established in the framework of the strategic level. In

addition, they consider the extension to overbooking at the last stage of the booking process,

while our overbooking decisions are made “on the go”.

9
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2.3 Strategic Decisions on Pricing

We consider a firm that needs to allocate capacity to a large number of customers over a short

horizon such as a day. The firm has limited capacity per unit time (“slots”), which is used to

serve customers with various schedule preferences. Customers are divided into separate classes.

Each class is defined by the price they pay per unit of capacity, the utility they receive from

service, their feasible set of capacity allocations, and their valuation of service delay. At the

strategic level, the problem we consider is how the firm should establish time-dependent variable

prices for capacity over the service horizon. Given the prices, we assume that each customer

chooses the capacity slots that fit her schedule to maximize the utility. In fact, this corresponds

to a two-stage Stackelberg game with complete, but imperfect, information between the firm

and customers. The firm is the leader setting prices while anticipating the subsequent behavior

of the customers. Each price vector defines a different subgame, and given prices customers

play the subgame. The decisions of the customers result in a capacity utilization schedule.

The objective at the strategic level is to establish a price scheme so that the customers’

equilibrium demand in the game framework is consistent with the firm’s preferred capacity

utilization schedule (the target schedule). If the firm does not know which target schedule is

most profitable, the optimal schedule and price scheme need to be established at the same time.

In this section, we demonstrate how to establish the price scheme and the firm’s target schedule.

In the next section we discuss the capacity allocation problem at the operational level that uses

the decisions of the strategic pricing as an input.

2.3.1 Problem Definition

We use column vectors throughout the paper. Vectors and matrices are in bold format. a′ is

the transpose of a vector a. A = (a1, · · · ,an) is a matrix obtained by combining its vector

elements, ai, i = 1, · · · , n along the natural dimension.

The main problem we address in this section is as follows. A firm has a finite service

horizon. The service horizon is divided into T ≥ 2 time intervals of equal length that are

used to serve a large number of customers with various schedule preferences. Without loss of
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Table 2.1: List of Notation

ams A demand pattern of class-m customers, a 0− 1 vector of length T
Am The demand pattern matrix of class-m customers, Am = (am1 , · · · ,amSm

)

A The demand pattern matrix for all customers, A = (A1, · · · ,AM )
ct The maximum capacity at service period t
c The maximum capacity vector, c = (c1, · · · , cT )′
δ The probability of one arrival in a reservation period
em A unit vector in length Sm

g(y,m, i) The overflow cost of admitting a type (m, i) arrival when the system state is y
hm The rejection cost for a class-m customer
Im The indifferent set of class-m customers
K The total number of reservation periods
κt The unit overflow cost in service period t
κ The overflow costs vector, κ = (κ1, · · · , κT )′
lm The total number of deliveries from a class-m customer
λm The total number of class-m customers
λ The total number of all customers
M The total number of customer classes
M The set of customer classes, M = {1, · · · ,M}
p̄m The nominal price of a class-m customer
p̄m The nominal prices vector for class-m customers, p̄m = (p̄1, · · · , p̄M )′

p̃t The variable price of a unit service at period t, identically applied to all customer classes
p̃ The variable prices vector, p̃ = (p̃1, · · · , p̃T )′
pms The price of a demand pattern s for a class-m customer
pm The price vector for class-m customer, pm = (pm1 , · · · , pmSm

)′

P The set of price vectors, P = {p1, · · · ,pM}
ψm
i The probability that a class-m customer chooses a demand pattern i in a reservation period

r(m, i) The operational revenue by admitting a type (m, i) arrival
Sm The total number of demand patterns of a class-m customer
Sm The set of demand patterns for class-m customers, Sm = {1, · · · , Sm}
T The total number of service periods
θt The service level coefficient at period t
θ The service level coefficient vector θ = (θ1, · · · , θT )′
ums The utility of a class-m customer that chooses demand pattern s
um The utility vector for class-m customers, um = (um1 , · · · , umSm

)′

ûm The equilibrium utility of class-m customers
ûm A vector of ũm in length Sm

vms The valuation of a class-m customer for a demand pattern s
vm The service valuation vector for a class-m customer, vm = (vm1 , · · · , vmSm

)′

ṽmt The valuation of a class-m customer for a unit service at period t
ṽm The service valuation vector for a class-m customer, ṽm = (ṽm1 , · · · , ṽmT )′

Vk The expected maximum operational revenue with k reservation periods to go
V̄k The approximate expected operational revenue with k reservation periods to go
wm

t The congestion cost of a class-m customer for a unit service at period t
wm The congestion cost vector in each service period for class-m, wm = (wm

1 , · · · , wm
T )′

xms The number of class-m customers that request demand pattern s
xm The demand pattern assignment vector for class-m customers, xm = (xm1 , · · · , xmSm

)′

x The assignment vector obtained by stacking its individual vectors, x = (x1; · · · ;xM )
X The set of demand pattern assignment vectors, X = {x1, · · · ,xM}
yt The total number of customers in service period t
y A vector indicating the number of customers in each service periods, y = (y1, · · · , yT )′
ỹt The firm’s target flow at service period t
ỹ The firm’s target flow vector, ỹ = (y1, · · · , yT )′
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generality, we fix the length of a time interval at one. Let ct be the maximum capacity at

time t and c = (c1, · · · , cT )′. There are a total of M customer classes. We denote the set of

customer classes by M = {1, · · · ,M}. A customer class-m has Sm potential demand fulfillment

patterns, ams , s = 1, · · · , Sm. Each pattern ams = (am1 , · · · , amT )′ is a 0-1 vector of length T such

that
∑T

t=1 a
m
t = lm, where lm is the number of deliveries requested by a class-m customer. Let

Am = (am1 , · · · ,amSm
) be the T × Sm matrix of feasible demand fulfillment patterns of class m.

Let Sm = {1, · · · , Sm} be the set of demand pattern indexes. For example, a feasible demand

pattern matrix for a type 2 customer and 4 service periods, i.e., lm = 2 and T = 4 can be:

A2 =



1 0 1

0 1 0

1 0 0

0 1 1


.

Let λm be the total number of class-m customers. Let xms be the number of class-m cus-

tomers that request demand pattern s ∈ Sm and xm = (xm1 , · · · , xmSm
)′. For notational conve-

nience, let X = {x1, · · · ,xM}. Let yt be the total number of customers requesting service at

time t and let y = (y1, · · · , yT )′. Then,

y =
∑
m∈M

Amxm. (2.1)

We assume that customers value the service according to the time of delivery and the

demand patterns. Let vms be the valuation of a class-m customer for a demand pattern s

and vm = (vm1 , · · · , vmSm
)′. Further we assume that customers incur a congestion cost based

on the number of other customers requesting service at the same time, i.e. the congestion

cost depends the number of orders in the system y. Though y is not known in advance, we

assume that customers either observe the firm’s posted booking limit or learn this through their

experience (an equilibrium behavior that will be discussed later) to evaluate their congestion

cost. Let wm
t (y) be the congestion cost of a class-m customer for a unit service at time t and

wm(y) = (wm
1 (y), · · · , wm

T (y))′. The congestion cost for a class-m customer that has demand

12
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pattern s thus is wm(y)′ams . Let p
m
s be the price class m pays for a demand pattern s and

pm = (pm1 , · · · , pmSm
)′. Let P = {p1, · · · ,pM}. A class-m customer who chooses demand

pattern s receives a utility:

ums (X,P) = vms − pms −wm(y)′ams ∀m ∈ M,∀s ∈ Sm. (2.2)

where y depends on X through (2.1). Let um(X,P) = (um1 (X,P), · · · , umSm
(X,P))′.

We use the Wardrop Equilibrium, see Wardrop (1952) and Appendix A to describe the

customers’ equilibrium behavior. We assume that given prices, customers choose the demand

pattern so that in equilibrium, no customer has any incentive to alter her preference. The

Wardrop equilibrium principle applies to a situation where there is a very large number of

infinitesimal users. This implies that in our case, when a customer unilaterally switches her

choice from one schedule to another, there is no measurable change in the utility of other

customers. We thus relax the integrality of xm requirement in our model. (For a discussion

of the relationship of Nash Equilibrium and Wardrop Equilibrium, see Haurie and Marcotte

(1985).)

Definition 2.1. Customer Equilibrium. Given a price P, X∗ is in equilibrium, if for every

class-m customer,

xm∗
s > 0 implies ums (X∗,P) ≥ umt (X∗,P) ∀t ∈ Sm. (2.3)

If xms > 0, there is positive flow for demand pattern s. The definition implies that the

equilibrium utility of all positive flow demand patterns for class-m customers is the same. All

other unused demand patterns for class-m customers would provide a weakly lower utility.

However, several demand patterns may provide the same maximum utility. Let ûm be the

equilibrium utility of class-m customer induced by X∗ given P. An alternative definition of the

customer equilibrium is, given P, X∗ is in equilibrium if and only if for every class m ∈ M and
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demand pattern s ∈ Sm:

ums (X∗,P)

 = ûm if xm∗
s > 0,

≤ ûm if xm∗
s = 0.

(2.4)

To ensure the existence of a customer equilibrium, we assume thatwm(y) has a monotonicity

property (see Appendices B for this definition and other relevant comments). We next express

the customer equilibrium defined in (2.3) and (2.4) in another form which will be used later as

constraints in a mathematical programming formulation in Section 2.3.3. Let ûm be a column

vector of ûm in length Sm, then (refEquilibrium2) can be written as,

(ûm − ums (X,P))xms = 0 ∀s ∈ Sm, ∀m ∈ M, (2.5)

ûm − um(X,P) ≥ 0 ∀m ∈ M.

(2.5) requires that for any class-m, the utilities associated with xms > 0, ∀s ∈ Sm, are the same

and equal to ûm. All other demand patterns provide no better utility.

Consider a firm that has a preferred booking limit ỹt at each service time t. Let ỹ =

(ỹ1, · · · , ỹT )′ be the Target Flow. In general, the equilibrium flow given by (2.1) resulting from

self-interested customers will not match the firm’s target flow ỹ.

In this section, we consider two problems. First, can we select a price P so that self-

interested customers choose the firm’s target flow? Second, how should the firm select a target

flow to maximize its profit?

We assume that the price charged to customers is composed of two parts: a class-dependent

nominal price and a time-dependent variable price. Let p̄m be the nominal price for class-m. We

use such nominal price to capture the practice of offering class-dependent and loyalty discounts.

Let p̃t be the variable price charged at time t. Typically p̃t will be higher at more popular times.

Let p̄ = (p̄1, · · · , p̄M )′ be the nominal price vector and p̃ = (p̃1, · · · , p̃T )′ be the variable price

vector. Then, the price for a class-m who receives demand pattern s is

pms = p̄mlm + p̃′ams . (2.6)
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It has been established in the traffic equilibrium literature (Dafermos, 1973) that when

multiple classes of customers are offered a proper set of class-dependent prices, the user optimal

solution is also system optimal. In our case, we can find a price for each order such that the user

optimal solution maximizes the combined utility of the firm and the customers, i.e., the solution

is system optimal. Our price follows an additive structure as in (2.6), i.e., variable prices are

identically applied to all customer types. (We cannot solve for the prices in the multiplicative

case.) In the next two subsections, we show how to find the prices so that customers behave

in a way that is consistent with the firm’s targeted demand profile, and how to establish the

booking limit and pricing policy so as to maximize the profit when the firm does not have a

preferred booking limit.

2.3.2 Strategic Pricing for a Specific Target Flow

In this subsection, we find a pricing strategy that can induce customers to choose demand

patterns such that the resulting equilibrium demand is consistent with the firm’s target flow.

Two relevant questions are: 1) Is there a pricing policy that induces a given target flow? 2)

How can we find a price mechanism based on (2.6) to induce a specific target flow?

Let ỹ be the firm’s preferred target flow. The target flow should be below the maximum

capacity. Further, it is possible that the firm may want to satisfy some service level in its target

flow. For example, it may not want to exceed some percentage of the maximum capacity. In

general there maybe a constraint

(ft(ỹ)− θtct)
+ ≤ ξt, ∀t ∈ T (2.7)

where ft(ỹ) is a function RT → R, θt ≥ 0 is a utilization coefficient, and ξt ≥ 0.

Suppose ỹ is posted as public information for all customers. ỹ would be a reasonable

approximation of the number of orders in each service periods by the end of the reservation

periods. Thus, we assume customers would use ỹ to evaluate their congestion cost. Further, we

assume the congestion costs wm(ỹ), ∀m ∈ M are known. For notational convenience, let em be

a unit vector in length Sm. Given these costs and a price set P, finding a customer equilibrium
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X∗ in (2.3) or (2.4) is equivalent to solving the problem,

max
X

∑
m∈M

(vm′ − pm′ −wm(ỹ)′Am)xm

s.t. em′xm ≤ λm ∀m ∈ M, (P1)

xm ≥ 0 ∀m ∈ M.

If the resulting number of orders y∗ =
∑

m∈MAmxm∗ from P1 is the same as the target flow ỹ,

then the price P induces the flow ỹ. However, in general, y∗ generated by the utility-maximizing

customers is not consistent with the firm’s target flow ỹ. We define,

Definition 2.2. A target flow ỹ is a feasible target flow if it satisfies the service level constraint

in (2.7) and there is an assignment of customers X that satisfies

∑
m∈M

Amxm = ỹ, (2.8)

em′xm ≤ λm ∀m ∈ M,

xm ≥ 0 ∀m ∈ M.

Definition 2.3. Given a feasible target flow ỹ and a price matrix P, the assignment X∗ solving

P1 is the user optimal solution under P. Also, if X∗ satisfies

∑
m∈M

Amxm∗ = ỹ, (2.9)

then X∗ is consistent with target flow ỹ, and P is an incentive optimal price to target flow ỹ.

The following Propositions 2.1 and 2.2 show that for any feasible target flow, there is a

pricing policy (p̄, p̃) defining price pms through (2.6) that can induce the target flow. Proposition

2.1 implies that a variable pricing strategy exists for any feasible target flow even when the

nominal price p̄ has been predetermined. Proposition 2.2 indicates that when the firm has

flexibility to select the nominal price, the nominal price and variable price can be found at the

same time.
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By including the target flow constraint in P1 and letting p̃ = 0, define the problem P2 as:

max
X

∑
m∈M

(vm′ − p̄mlmem′ −w(ỹ)′Am)xm

s.t.
∑
m∈M

Amxm = ỹ, (P2)

em′xm ≤ λm ∀m ∈ M,

xm ≥ 0 ∀m ∈ M.

Proposition 2.1. Let X∗ be the optimal solution of P2. Let α̂ be the Lagrangian multiplier

vector w.r.t the target flow constraint in P2 at X∗ for any given feasible target flow ỹ and

nominal price p̄. Then, p̃ = α̂ is the variable price vector such that X∗ is an optimal solution

to P1 that is consistent with ỹ.

Proof. The optimality conditions of P2 (Bertsekas, 1995) state that X∗ is a global maximum

for P2 if and only if X∗ is feasible and there exists a T dimensional vector α̂ such that X∗ is

an optimal solution of the following problem:

max
X

∑
m∈M

(vm′ − p̄mlmem′ −wm(ỹ)′Am)xm − α̂′(
∑
m∈M

Amxm − ỹ) (2.10)

s.t. em′xm ≤ λm ∀m ∈ M,

xm ≥ 0 ∀m ∈ M.

The objective function of (2.10) can be rewritten as

∑
m∈M

(vm′ − p̄mlmem′ − α̂′Am −wm(ỹ)′Am)xm + α̂′ỹ. (2.11)

When the firm charges nominal price p̄ and variable price p̃ = α̂, the customer equilibrium
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solution is found by substituting P with p̄ and p̃ in P1. Then,

max
X

∑
m∈M

(vm′ − p̄mlmem′ − α̂′Am −wm(ỹ)′Am)xm (2.12)

s.t. em′xm ≤ λm ∀m ∈ M,

xm ≥ 0 ∀m ∈ M.

Since the last term in (2.11) is a constant for any fixed α̂ and target flow ỹ, the optimization

problems (2.12) and (2.10) are equivalent. Therefore, the optimal solution of (2.10), X∗, is an

optimal solution of (2.12), which is the user optimal solution and is consistent with ỹ under the

variable pricing policy p̃ = α̂.

When the firm has the flexibility to choose the nominal price p̄ together with the variable

price p̃, we have the following results.

Define problem P3, by letting p̄ = 0 in P2, as:

max
X

∑
m∈M

(vm′ −w(ỹ)′Am)xm

s.t.
∑

m∈M
Amxm = ỹ, (P3)

em′xm ≤ λm ∀m ∈ M,

xm ≥ 0 ∀m ∈ M.

Proposition 2.2. Let X∗ be the optimal solution to P3. Let α and β be the Lagrangian

multiplier vectors w.r.t the target flow constraints and demand constraints, respectively, at X∗.

Then given any feasible target flow ỹ, p̃ = α and p̄ = (β1/l1, · · · , βm/lm, · · · , βM/lM )′ define

an optimal price policy such that X∗ is a user optimal solution of P1 that is consistent with ỹ.

Proof. Observe that P3 is a linear programming problem, thus X∗ is an optimal solution of

P3 if and only if X∗ is feasible and there exist α and β, where βm ≥ 0, βm = 0 for all m ∈ M
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with em′xm∗ < λm, and X∗ is the optimal solution of the following problem,

max
X

∑
m∈M

(vm′ −w(ỹ)′Am)xm −α′(
∑
m∈M

Amxm − ỹ)−
∑
m∈M

βm(em′xm − λm)(2.13)

s.t. xm ≥ 0 ∀m ∈ M.

The objective function in (2.13) can be rewritten as,

∑
m∈M

(vm′ −α′Am − βmem′ −w(ỹ)′Am)xm +α′ỹ+
∑
m∈M

βmλm. (2.14)

Assume that we use p̄ = (β1/l1, · · · , βm/lm, · · · , βM/lM )′ and p̃ = α as the nominal price

and the variable price, respectively, the first term in (2.14) is the objective function of the user

optimal problem defined by P1 under the proposed pricing policy. The last two terms in (2.14)

are constant given fixed multiplier α, β and target flow. Thus the user optimal problem P1

is equivalent to (2.13), i.e., the optimal solution of (2.13) and (2.14) X∗, which is consistent

with target flow ỹ, is also the user optimal solution defined in P1 when using the Lagrangian

multipliers as the pricing strategy, i.e., pms = βm +α′ams , ∀m ∈ M, ∀s ∈ Sm.

To find the Lagrangian multipliers, let P4 be the dual of P2.

minp̃,β p̃′ỹ+
∑
m∈M

βmλm

s.t. p̃′Am + βmem′ ≥ vm′ − p̄mlmem′ −wm(ỹ)′Am ∀m ∈ M, (P4)

β ≥ 0.

P4’s optimal solution provides the Lagrangian multipliers of P2 (Bertsekas, 1999). Alterna-

tively the KarushKuhnTucker (KKT) conditions of P2 atX∗ provide the Lagrangian multipliers

as given in the following proposition.
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Proposition 2.3. The pricing strategy pms = p̄mlm + p̃′am
s can induce a feasible target flow ỹ

if and only if P satisfies

vms − p̄mlm − p̃′am
s −wm(ỹ)′am

s − βm + πms = 0, ∀m ∈ M, ∀s ∈ Sm, (2.15)

where βm ≥ 0, βm = 0 ∀m /∈ A1(X
∗), πms ≥ 0 and πms = 0 ∀(s,m) /∈ A2(X

∗), where

A1(X
∗) = {m|em′xm∗ = λm,m ∈ M} and A2(X

∗) = {(s,m)|xm∗
s = 0,m ∈ M, s ∈ Sm} are the

set of active constraints at the optimal solution X∗ of P2.

Proof. If (2.15) is satisfied, X∗ is an equilibrium when the pricing strategy pms = p̄mlm + p̃′ams

is used. This is true because for any xms > 0, πms = 0, (2.15) becomes

vms − p̄mlm − p̃′ams −wm(ỹ)′ams = βm,∀m ∈ M, ∀s ∈ Sm, (2.16)

where βm can be interpreted as the equilibrium utility for a class-m customer. For any xms = 0,

πms ≥ 0, (2.15) becomes

vms − p̄mlm − p̃′ams −wm(ỹ)′ams − βm = −πms ≤ 0, ∀m ∈ M,∀s ∈ Sm, (2.17)

which implies that all utilities associated with zero flow must be no greater than the equilibrium

utility.

On the other hand, if pms = p̄mlm + p̃′ams can induce target flow ỹ, then a user optimal flow

of P1- X∗ is consistent with ỹ. Thus (2.15) is just the KKT condition for X∗.

It should be noted, however, that it is possible that the pricing strategy obtained from

solving P4 (or (2.15)) may not be unique. Therefore there may be some degree of freedom

in choosing a pricing strategy. Several criteria can be adopted. For example, the firm may

be able to choose negative variable prices, which is equivalent to discounting price of the less

popular service periods without increasing prices for the popular service periods, or to choose

the variable prices that are small as compared to the nominal price, or to add a constant to all

the prices and use the same target flow.
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2.3.3 Strategic Pricing When Choosing the Target Flow

In some cases, the firm may not have a preferred target flow or may not know which target flow

is the best to optimize its profit. We next show how to establish the target flow and pricing

strategy with an objective of maximizing the profit.

The firm’s problem of finding the target flow and prices that would maximize its profit,

denoted by P5, is as follows:

maxP,ỹ,û

∑
m∈M p̄mlmem′xm + p̃′ỹ

s.t. (ûm − ums (ỹ, p̃))xms = 0 ∀s ∈ Sm, ∀m ∈ M, (a)

ûm − um(ỹ, p̃) ≥ 0 ∀m ∈ M, (b)

em′xm ≤ λm ∀m ∈ M, (c)

xm ≥ 0 ∀m ∈ M, (d) (P5)

ûm ≥ 0 ∀m ∈ M, (e)∑
m∈MAmxm = ỹ, (f)

ỹ ≤ θ · c, (g)

um = vm − p̄mlmem −Am′p̃−Am′wm(ỹ) ∀m ∈ M. (h)

In P5, (a) and (b) express the equilibrium of demand and price, (e) implies that customers

have nonnegative utilities, (f) expresses the target flow constraint, and (h) defines the utility

for class-m. (g) is the service quality constraint, we use ft(y) = yt and require yt ≤ θtct, ∀t ∈ T

for simplicity in the service level constraint as defined in (2.7). We denoted it as y ≤ θ · c,

where · defined the element-wise multiplicative operation, i.e., we allow different utilization

requirements for different service periods.

The firm’s problem is a mathematical program with nonlinear complementary constraints.

This type of problems is typically difficult to solve. We solve P5 in two steps. We first find

the firm’s optimal target flow. Then, the optimal price to induce the optimal target flow can

be established by the results in the previous section.

The following proposition shows that the optimal target flow can be formulated as a non-

linear optimization problem with linear constraints.
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Proposition 2.4. The optimal target flow of the firm ỹ∗ can be found by solving:

maxx,ỹ
∑
m∈M

(vm′ −wm(ỹ)′Am)xm (2.18)

s.t.
∑
m∈M

Amxm = ỹ,∑
s∈Sm

em′xm ≤ λm ∀m ∈ M,

ỹ ≤ θ · c,

xm ≥ 0 ∀m ∈ M.

and using ỹ∗ as a given target flow, the optimal prices can be established by Proposition 2.2.

Proof. Let ỹ∗ be the optimal solution from (2.18). We next show that the optimal prices

obtained from Proposition 2.2 that induces ỹ∗ provide the firm with maximal profit. Let α∗,

β∗, π∗ be the Lagrangian multipliers corresponding to the target flow, demand and positiveness

of the demand xm constraints at the optimal solution of P3, where the target flow is replaced

by ỹ∗. From the KKT conditions, α∗ and β∗ and π∗ must satisfy,

vms −wm(ỹ∗)′ams −α∗′ams − βm∗ + πm∗
s = 0, ∀m ∈ M,∀s ∈ Sm (2.19)

Multiplying (2.19) by xm∗
s , and combining with the constraint that xm∗

s ∗ πm∗
s = 0, we have

vms x
m∗
s −wm(ỹ∗)′ams x

m∗
s −α∗′ams x

m∗
s − βm∗xm∗

s = 0, ∀m ∈ M, ∀s ∈ Sm (2.20)

Thus, ∑
m∈M

(vm′ −wm(ỹ∗)′Am)xm∗ −α∗′ỹ∗ −
∑
m∈M

βm∗em′xm = 0 (2.21)

and

α∗′ỹ∗ +
∑
m∈M

βm∗em′xm =
∑
m∈M

(vm′ −wm(ỹ∗)′Am)xm∗ (2.22)

The left hand side of (2.22) represents the firm’s profit from variable pricing. The right

hand side represents customers’ maximum utility and is maximized in (2.18). The firm receives

revenue α∗′ỹ∗, when p̃ = α∗, p̄m = βm∗/lm, ∀m ∈ M and ỹ is ỹ∗. That is the ỹ∗ maximize the
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customers’ utility and these prices transfer all of the utilities to the firm which maximize the

firm’s profit.

From the proof of Proposition 2.4, we can see that the firm can adjust prices to take all of

the rents and reduce the customers’ net utilities to zero. The firm can also charge an arbitrary

nominal price p̄m < βm∗/lm and induce the same target flow. However, in such cases, some of

the profit will be left to the customers’ side.

2.3.4 Examples

Example 1 below shows how customers respond to different variable prices in equilibrium.

Example 1

Consider the following problem: Let the planning horizon be T = 3. There are two classes

of customers with l1 = 1, l2 = 2, λ1 = 2, and λ2 = 3, so that the total demand of orders

is 2 + 3 ∗ 2 = 8. Class 1 and 2 customers’ valuations of the service are v1 = (8, 12, 6)′ and

v2 = (25, 23)′. Customers incur congestion cost that depends on the number of customers in

the service periods. Assume that w1(y) = w2(y) = (y1, · · · , y3)′, where yt is the number of

customers in the service period t, respectively. The firm charges nominal prices for the class 1

and class 2 customer p̄1 = 3 and p̄2 = 4, respectively. Assume the firm wants to induce a target

flow ỹ = (3, 3, 2)′.

Assume customers from the two classes use the following demand patterns respectively:

A1 =


1 0 0

0 1 0

0 0 1

 , A2 =


1 0

1 1

0 1

 .

Since the target flow and nominal price are given, we substitute them into the objective

function in P1:

max
x

(2− p̃1)x
1
1 + (6− p̃2)x

1
2 + (1− p̃3)x

1
3 + (11− p̃1 − p̃2)x

2
1 + (10− p̃2 − p̃3)x

2
2, (2.23)
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let X∗ be the solution and y∗ be the corresponding flow, then we need to check if y∗ = ỹ. The

result depends on the value of variable price p̃.

• Case 1: p̃ = (0, 0, 0)′, i.e., no variable incentive pricing.

Substitute p̃ = (0, 0, 0)′ into (2.23), the customer optimization problem as in P1 becomes:

maxx≥0 2x11 + 6x12 + x13 + 11x21 + 10x22

s.t. x11 + x12 + x13 ≤ 2,

x21 + x22 ≤ 3.

It can be verified that x1∗ = (0, 2, 0)′ and x2∗ = (3, 0)′ solve the above problem. The

flow allocated to each period is y∗ = (3, 5, 0)′, which is different from the target flow

ỹ = (3, 3, 2)′. Therefore, y∗ is not consistent with the target flow ỹ under price policy

p̃ = (0, 0, 0)′, and p̃ = (0, 0, 0)′ is not the incentive optimal price to ỹ = (3, 3, 2)′.

• Case 2: p̃ = (1, 5, 0)′.

Substitute p̃ = (1, 5, 0)′ into (2.23), the customer optimization problem as in P1 becomes:

maxx≥0 x11 + x12 + x13 + 5x21 + 5x22

s.t. x11 + x12 + x13 ≤ 2,

x21 + x22 ≤ 3.

This problem has a solution x1∗ = (2, 0, 0)′, x2∗ = (1, 2). The flow allocated to each

period is y∗ = (3, 3, 2)′, which is exactly the target flow. Therefore, y∗ is the same as ỹ

under p̃ = (1, 5, 0)′, p̃ = (1, 5, 0)′ is an incentive optimal price to ỹ = (3, 3, 2)′.

Note that p̃ = (1, 5, 0)′ induces multiple solutions, some solutions are consistent with the

target flow ỹ and some are not. For example, x1∗ = (0, 2, 0)′, x2∗ = (0, 3)′ is also a solution, but

the flow allocated to each period is y∗ = (0, 5, 3)′, which is different from ỹ. Another solution

is x1∗ = (1, 0, 1)′, x2∗ = (2, 1)′, the resulting flow is y∗ = (3, 3, 2)′, which is exactly the target

flow.
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Example 2 shows how to obtain the price that can induce a given target flow.

Example 2

Consider the following problem: Let the planning horizon be T = 4. There are two classes

of customers with l1 = 2, l2 = 3, λ1 = 2, and λ2 = 2, so that the total demand of orders is

2∗2+2∗3 = 10. Congestion cost w1(y) = w2(y) = (y1, 4y2, 4y3, y4)
′, where yt, t = 1, · · · , 4 are

the number of customers in each service period. Class 1 customers’ valuations of the service

are v1 = (22, 29, 23)′ and class 2 customers’ valuations of the service are v2 = (34, 35)′. The

firm’s objective is to find a pricing strategy (p̄, p̃) to maximize its profit. Assuming the demand

pattern matrices for the two classes of customers are:

A1 =



1 0 0

1 1 0

0 1 1

0 0 1


, A2 =



1 0

1 1

1 1

0 1


.

• If the firm wants to induce a feasible target flow ỹ = (2, 3, 3, 2)′.

Since the target flow is known and the nominal price is not given, we use the result of

Proposition 2.2 to find the optimal price strategy. From Proposition 2.2, the Lagrangian

multipliers of the following problem provide the optimal price.

maxx≥0 8x11 + 5x12 + 9x13 + 8x21 + 9x22 (2.24)

s.t. x11 + x21 = 2,

x11 + x12 + x21 + x22 = 3,

x12 + x13 + x21 + x22 = 3,

x13 + x22 = 2,

x11 + x12 + x13 ≤ 2,

x21 + x22 ≤ 2.
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The dual of (2.24) is

minp 2p̃1 + 3p̃2 + 3p̃3 + 2p̃4 + 4p̄1 + 6p̄2 (2.25)

s.t. p̃1 + p̃2 + 2p̄1 ≥ 8,

p̃2 + p̃3 + 2p̄1 ≥ 5,

p̃3 + p̃4 + 2p̄1 ≥ 9,

p̃1 + p̃2 + p̃3 + 3p̄2 ≥ 8,

p̃2 + p̃3 + p̃4 + 3p̄2 ≥ 9.

The optimal solution of above problem are p̃ = (0, 4, 4, 1)′ and p̄ = (2, 0)′. The firm’s

strategic profit is 34 under this price strategy.

• If the firm’s target flow is unknown.

Since the firm’s target flow is not available, we first find the firm’s optimal target flow.

From Proposition 2.4,

maxx≥0 (22− y1 − 4y2)x
1
1 + (29− 4y2 − 4y3)x

1
2 + (23− 4y3 − y4)x

1
3 (2.26)

+(34− y1 − 4y2 − 4y3)x
2
1 + (35− 4y2 − 4y3 − y4)x

2
2

s.t. x11 + x21 = y1,

x11 + x12 + x21 + x22 = y2,

x12 + x13 + x21 + x22 = y3,

x13 + x22 = y4,

x11 + x12 + x13 ≤ 2,

x21 + x22 ≤ 2.

Solving (2.26), the optimal target flow ỹ = (1.24, 1.97, 1.97, 1.74)′. Substitute this target
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flow in (2.26), we have

maxx≥0 12.88x11 + 13.24x12 + 13.88x13 + 17x21 + 17.50x22 (2.27)

s.t. x11 + x21 = 1.24,

x11 + x12 + x21 + x22 = 1.97,

x12 + x13 + x21 + x22 = 1.97,

x13 + x22 = 1.74,

x11 + x12 + x13 ≤ 2.

x21 + x22 ≤ 2.

To find the optimal prices, we need to find the Lagrangian multipliers of (2.27). The dual

of (2.27) is

minp 1.24p̃1 + 1.97p̃2 + 1.97p̃3 + 1.74p̃4 + 4p̄1 + 6p̄2 (2.28)

s.t. p̃1 + p̃2 + 2p̄1 ≥ 12.88,

p̃2 + p̃3 + 2p̄1 ≥ 13.24,

p̃3 + p̃4 + 2p̄1 ≥ 13.88,

p̃1 + p̃2 + p̃3 + 3p̄2 ≥ 17,

p̃2 + p̃3 + p̃4 + 3p̄2 ≥ 17.50.

Solving (2.28), the optimal prices of the firm are p̃ = (0, 8.5, 8.5, 0.5)′ and p̄ = (2.2, 0)′.

The firm’s strategic profit is 43.13 under this price strategy.

2.4 Operational Decision on Admission Control

In this section we study how the firm should allocate capacity when customers try to make

reservations. Recall that at the strategic level the firm determined a target capacity vector and

time-dependent prices to maximize the profit it receives in the equilibrium solution. However,

this is done long before the actual reservations are placed and capacity is consumed. The
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operational problem considers how the firm should behave at this later date.

We consider customers arriving over a horizon, the “reservation period”, place requests for

capacity during some service period. Suppose the reservation period is day 0, customers are

to reserve capacity starting on day 1. We model customers as arriving according to a rate λ

Poisson process during the reservation period. To simplify modeling, we divide the reservation

period intoK stages, with at most one arrival occurring during each stage. Thus the probability

of one arrival in a stage is

δ = λ/K.

(This is the common discrete time dynamic formulation.) Customers then request capacity

during the service period and the firm accepts or rejects the reservation. We approach the

problem through an approximate dynamic programming formulation.

Customers request capacity to maximize their utilities. For any given class-m and demand

pattern s, the utility of s is determined by the equilibrium assignment, X∗, and the price matrix

P through ums (X∗,P). However, at the operational level, X∗ is not known, but ỹ and P are.

Because ums (X∗,P) depends only on the ỹ vector, we can define the customer’s utility(with a

slight abuse of notation) as ums (ỹ,P). Potentially a class-m customer can obtain the maximum

utility ûm from several demand patterns. In this case, she would be indifferent to choosing

any of them. Let Im(ỹ,P) = {s|ums (ỹ,P) = ûm, s ∈ Sm} be the indifference set of class-m.

Upon arrival, each class-m customer chooses a demand pattern from the indifference set Im.

We assume that in equilibrium customers choose demand pattern i ∈ Im according to some

probability ψm
i . Thus each arrival is characterized as a type (m, i).

The firm then has the choice whether or not to accept the reservation request of an arriving

customer. If the request is accepted, the capacity for demand pattern i is allocated to that

customer and cannot be allocated to other customers. If the request is rejected, the customer

departs. We do not allow a rejected customer to try to reserve a second time by suggesting

an alternative demand pattern. We acknowledge this may be a limitation of the model as cus-

tomers could repeatedly request capacity for alternative demand patterns until one is accepted.

Allowing this behavior would then require the firm to determine which of each customer types’
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demand patterns to accept. As a result, this will greatly increase the size of the problem which

will be beyond the scope that can be addressed through dynamic programming techniques.

Moreover, the cost of changing demand patterns for industrial customers is high and therefore

this assumption is relevant. This is in fact the main reason why online dynamic pricing is less

relevant in this study.

Naturally, there are two definitions of capacity: target flow capacity and maximum capacity.

The Target Flow allocation (TFA) model assumes that the maximum number of jobs allocated

to a time period is given by the target flow and that no bookings can be made above this

limit. The Maximum Capacity Allocation (MCA) model assumes that the limit is given by the

maximum capacity c. We assume that there is an additional congestion cost incurred by the

firm if an order is booked beyond the target flow. This can be done as long as the total booking

is below the maximum capacity.

2.4.1 Model and Formulation

The dynamic program is formulated as follows. The system state is the total number of orders

assigned to each service slot, denote as y = (y1, . . . , yT ). The initial state is yK = 0, where we

count time backward from 0.

Recall that ami is the ith column of the demand pattern matrix Am of a class-m customers.

Let u = 1 if a customer is accepted, 0 otherwise. Let r(m, i) be the revenue associated with

admitting a type (m, i) arrival:

r(m, i) = p̄mlm + p̃′ami .

Let hm be the cost associated with rejecting a class-m customer. Under the MCA model,

additional costs are incurred if capacity is reserved beyond the target flow. Let g(y,m, i) be

the overflow cost for booking a type (m, i) customer in state y and g(y,m, i) = 0 if y < ỹ. We

assume g(y,m, i) is non-decreasing in y for all (m, i):

g(y,m, i) ≤ g(y+ ant ,m, i), ∀(n, t).
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For example, let y(m, i, 1) be the allocated capacity if a type (m, i) customer is accepted,

g(y,m, i) =
∑
t∈T

κt ×min
[
yt(m, i, 1)− yt, (yt(m, i, 1)− yTt )

+
]
is a piecewise linear overflow cost

function, where κt is the cost charged for each unit over the target flow at service period t.

Let Vk(y) be the expected maximum profit with k periods to go. Then the dynamic pro-

gramming formulation for the MCA model is

Vk(y) = (1− δ)Vk−1(y) + δ
∑
m∈M

∑
i∈Im

ψm
i Vk(y,m, i),

where Vk(y,m, i) = max{r(m, i)− g(y,m, i) + Vk−1(y+ ami ),−hm + Vk−1(y)} if y(m, i, 1) ≤ c

and Vk(y,m, i) = −hm + Vk−1(y) otherwise.

Let V0(y) = 0 for all y be the boundary condition. The objective is

maxVK(0).

The Target Flow Allocation (TFA) model is the same as the MCA formulation where c is

replaced by ỹ. In this case, there is no overbooking cost and g(y,m, i) is 0.

2.4.2 Structural Properties

We now present several structural properties of the dynamic program. These hold for both the

MCA and the TFA formulations.

Lemma 2.1. The value function Vk(y,m, i) is non-increasing as a function of y:

Vk(y) ≥ Vk(y+ am
i ), ∀(m, i).

Proof. Suppose we have an optimal policy u∗ when we start from state y + ami at period k.

u∗ will always be feasible when we start from y. Since the overflow cost g(y,m, i) increases in

y for all (m, i), the value for the objective function when we start from y and use u∗ will be

higher, but u∗ is not necessarily optimal. Therefore, we must have

Vk(y) ≥ Vk(y+ ami ), ∀(m, i).
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Next, we define the marginal opportunity cost in state y for admitting (m, i) with k periods

to go as

∆Vk(y,m, i) = Vk−1(y)− Vk−1(y+ ami ).

In a standard dynamic pricing formulation, we would want to establish either a capacity

threshold or a time threshold for which we would always accept a type-(m, i) arrival given

sufficient capacity or time-to-go, and reject otherwise. That is a time threshold, dependent on

the capacity, and arrival type would be determined as some time K∗ such that

K∗(y,m, i) = min{k : ∆Vk(y,m, i) ≤ r(m, i)− g(y,m, i) + hm}. (2.29)

A capacity threshold, dependent on the time to go k and arrival type, is defined as

Y ∗(k,m, i) = max{y : ∆Vk(y,m, i) ≥ r(m, i)− g(y,m, i) + hm}, (2.30)

where max{y1,y2, . . . ,yn} = (max(y11, y
2
1, . . . , y

n
1 ),max(y12, y

2
2, . . . , y

n
2 ), . . .), i.e., the maximum

of the vector elements.

If we can find K∗(y,m, i) and Y ∗(k,m, i), then we could adopt a time or capacity threshold

policy for the dynamic program. To establish the threshold policies, we need to show the

monotonicity of the marginal cost, i.e., that the following inequality holds:

∆Vk(y) ≤ ∆Vk(y+ ami ), ∀(m, i).

Unfortunately, because of the capacity constraints and multiple orders, the marginal cost func-

tion is not monotone.

Proposition 2.5. Neither a time threshold policy nor a capacity threshold policy are necessarily

optimal. Given any period k and arrival (m, i), there does not exist a threshold vector Y ∗(k,m, i)

such that if yt ≥ Y ∗
t for all t = 1, . . . , T , the arrival should be rejected, and accepted otherwise.

Similarly, given state y and an arrival (m, i), there does not exist a time threshold such that if

k ≤ K∗(y,m, i) the arrival should be rejected, and accepted if k > K∗(y,m, i).
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Proof. We establish the proposition using a counter-example. We show that depending upon

the state and arrival type, ∆Vk(y,m, i) is not necessarily greater or less than ∆Vk(y). The time

and state thresholds defined in (2.29) and (2.30) do not exist.

Consider the following problem: A firm has 4 service periods T = {1, 2, 3, 4} and 4 reserva-

tion periods, K = 4. There are three types of customers M = {1, 2, 3}. The number of orders

per request for each type of customers is l1 = 1, l2 = 2, l3 = 3. The order patterns for each

type of customers are expressed in matrixes A1, A2, and A3, respectively:

A1 =



0

0

1

0


, A2 =



1 0

1 0

0 1

0 1


, A3 =



0

1

1

1


,

where columns of in the matrxes represent types of arrivals. Thus, we have four types of arrivals,

(1, 1), (2, 1), (2, 2) and (3, 1). For example, the first column in A2 is for arrival (2, 1), i.e., type

2 customer choose their first demand pattern and a unit of capacity in periods 1 and 2 will be

reserved upon admission. The probability of arrivals are 0.2, 0.2, 0.2 and 0.3 respectively (there

is a 0.1 probability that no customer arrives). Let the profit earned in the current period if the

arrival is accepted be r(1, 1) = 1, r(2, 1) = 5, and r(2, 2) = 10, r(3, 1) = 100. Rejection costs for

each class of customers are h1 = 0, h2 = −1, and h3 = 0. Maximum Capacity is c = (2, 1, 2, 2)′.

The expected profit with 2 periods to go given the states y is given in Table 2.1.

Let the arrival type with 3 period to go be (1, 1), we have

∆V3((0, 0, 0, 0), 1, 1) = V2(0, 0, 0, 0)− V2(0, 0, 1, 0) = 3.12

∆V3((1, 1, 0, 0), 1, 1) = V2(1, 1, 0, 0)− V2(1, 1, 1, 0) = 0.68

∆V3((0, 1, 1, 1), 1, 1) = V3(0, 1, 1, 1)− V3(0, 1, 2, 1) = 4.12.

We can see that

∆V3((0, 1, 1, 1), 1, 1) ≥ ∆V3((0, 0, 0, 0), 1, 1) ≥ ∆V3((1, 1, 0, 0), 1, 1).
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Table 2.2: The expected profits with 2 periods to go

State (y) Expected Profit V2(y)

0020 0.76
0021 0.76
1110 2.72
2100 3.40
1111 2.72
0022 0.76
0122 -1.40
0011 52.63
0121 -1.40
0111 2.72
0010 52.63
1100 3.40
0000 55.75

Therefore, the monotonicity of ∆V3(y, 1, 1) does not hold. Further, if we check the optimal

admission control in period 3, (1, 1) is rejected when the state is (0, 0, 0, 0), accepted when it is

(1, 1, 0, 0), and rejected when it is (0, 1, 1, 1).

2.4.3 An Upper Bound for the Operational Problem

In this subsection, we describe an upper bound for the dynamic programming problems of

MCA and TFA models presented in subsection 2.4.1. If the demand realization were known a

priori, the firm could optimize the admission control with complete information. Let Hm
i be the

number of type (m, i) arrivals over the reservation horizon and let Hm =
(
Hm

1 , . . . , H
M
|Im|

)
and

H = (H1, . . . ,HM ). Given H, an upper bound is provided by solving the following problem.

Recall that xmi is the number of class-m customers assigned to the ith demand pattern and let

xm = {xmi , . . . , xm|Im|}. An upper bound for the operational problem is
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VUB(H) = max
X

∑
m∈M

p̄mlmem′xm + p̃′
∑
m∈M

Amxm −
∑
m∈M

hmem′(Hm − xm)

−κ′

(( ∑
m∈M

Amxm

)
− ỹ

)+

s.t.
∑
m∈M

Amxm ≤ c, (2.31)

xm ≤ Hm ∀m ∈ M,

xmi integer, ∀m ∈ M, ∀i ∈ Im.

The problem maximizes the revenue less overflow and rejection cost, subject to the capacity

and demand constraints. VUB(H) is an upper bound on the profit for a sample path H. By

taking expectations over all H, EH(VUB(H)) would provide an upper bound for the expected

profit of the dynamic formulations in subsection 2.4.1. However, it is impossible to calculate

this expectation EH(VUB(H)), as there are far too many realizations in any reasonably sized

problem, and for each realization we must solve an integer programming problem. Therefore,

we only estimate the upper bound by using a Monte Carlo simulation. One can also solve

(2.31) with the expected arrival rates and use this as the approximation of the cost to go. Next,

we will use the upper bound estimated to evaluate the dynamic programming approximation

developed.

2.4.4 Value Function Approximation

In this subsection, we present an approximation of the expected value function during the

reservation period. The approximation will be used in the development of a heuristic for the

operational problem.

Let z̄mk be the expected aggregate demand for class-m during the periods k − 1 to 1. Let

z̄k = (z1k, . . . , z̄
m
k ). Given current state y and the expected aggregate demand z̄k, let V̄k(y, z̄k)

be the approximate expected profit to go, approximating Vk(y). For the MCA model, V̄k(y, z̄k)

is given by solving the following integer problem:
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V̄k(y, z̄k) = max
X

∑
m∈M

p̄mlmem′xm + p̃′
∑
m∈M

Amxm −
∑
m∈M

hm(z̄mk − em′xm)

−κ′

(( ∑
m∈M

Am

)
xm + y− ỹ

)+

s.t.
∑
m∈M

Amxm ≤ c− y, (2.32)

em′xm ≤ z̄mk ∀m ∈ M,

xmi integer ∀m ∈ M, i ∈ Im.

The value function approximation for the TFA model is obtained by substituting ỹ in for c

and noting the last term of the objective function is then identically 0. For the MCA model, the

third term is non-linear. However, introducing the auxiliary vector τ (a T dimensional vector),

we can rewrite (2.32) as

V̄k(y, z̄k) = max
X

∑
m∈M

p̄mlmem′xm + p̃′
∑
m∈M

Amxm − κ′τ −
∑
m∈M

hm(z̄mk − em′xm)

s.t.
∑
m∈M

Amxm ≤ c− y, (2.33)

em′xm ≤ z̄mk ∀m ∈ M,

τ ≥
∑
m∈M

Amxm + y− ỹ,

τ ≥ 0,

xmi integer ∀m ∈ M, i ∈ Im.

The problem (2.33) is still a difficult linear integer program. However, in some cases it

would be natural for the potential demand patterns to take deliveries in consecutive time

periods. For example, the concrete distributing problem requires that the deliveries have to be

made consecutively. In this case, all the 1’s in each column of the matrix of demand patterns

would be consecutive. Then it is easy to show that the solution to the linear programming

relaxation of (2.33) will be integer (Wolsey and Nemhauser, 1998).

We now present a simple value function approximation heuristic for solving the MCA and
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TFA models.

Observe V̄k−1(y, z̄k−1)− V̄k−1(y+ami , z̄k−1) approximates the opportunity cost of accepting

a type (m, i) customer in period k. This opportunity cost is compared with the marginal benefit

of accepting the customer, r(m, i)−g(y,m, i)+hm. Doing so provides an approximate dynamic

program heuristic. Formally:

Value Function Heuristic (VF-Heuristic)

Step 1 For each arrival, check if the arrival in period k is feasible for the available capacity:

If y+ am
i ≥ c, reject the arrival, else go to the next step.

Step 2 Compare marginal benefit and opportunity cost:

Marginal Benefit= r(m, i) + hm − g(y,m, i),

Opportunity Cost= V̄k−1(y, z̄k−1) − V̄k−1(y + ami , z̄k−1), where V̄ is obtained by solving

(2.33).

If (Marginal Benefit ≥ Opportunity Cost)

Accept the arrival.

Else

Reject the arrival.

As an alternative, we will compare the VF-Heuristic to a Myopic heuristic, where the firm

admits a customer request as long as there is sufficient capacity.

2.4.5 Performance of the Value Function Heuristic

We use Monte Carlo simulation to evaluate the performance of the VF-Heuristic. We compare

it to the myopic heuristic.

We test several test cases with different sizes, defined by the number of service periods, T ,

the number of customer types,M , and the number of reservation periods, K. We consider three

groups of computational experiments. For the small-size cases defined by T = 6,M = 3, 4, 5 and

K = 5, 6, 7, 8, we can solve the TFA and MCA dynamic programs through backward induction.

For these cases, we can calculate the relative efficiency (RE) of the VF-Heuristic and the Myopic

heuristic given by V/V ′, where V is the profit given by the heuristic and V ′ is the optimum
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given by the backward induction.

We also test medium-size cases with T = 16, 24, 32;M = 5, 7; and K = 32, 96, 100, 200;

and large-size cases with T = 48, 96,M = 9 and K = 500. For these sizes the exact solution

cannot be found. We therefore report on the performance of the heuristic by comparing the

optimal solution of the heuristic with the upper bound given by (2.31). This is the upper bound

efficiency (UE): V/VUB where VUB is the upper bound value.

The difficulty in solving any given instance is related to the ratio of the demand to the

capacity (namely, the implied utilization or congestion index of the system). For the TFA

model we report the congestion index CIy =
∑

m∈M λmlm∑
t∈T ỹt

with respect to the target flow vector,

ỹ. For the MCA model we report CIy and the congestion index CIc, given with respect to the

total capacity: CIc =
∑

m∈M λmlm∑
t∈T ct

.

Table 2.3 represents the results for the TFA model, comparing the VF-Heuristic to the

Myopic heuristic. Table 2.4 presents the same for the MCA model. We observe for the small-

size cases that the VF-Heuristic generally performs well compared with the optimum value.

Further, we observe that it outperforms the Myopic heuristic (except for trivial differences in

two cases). We note that for these small cases the upper bound efficiency is approximately 5%

to 10% lower than the relative efficiency.

From Table 2.3 we can make several observations on the performance of the VF-Heuristic.

First, it generally outperforms the Myopic heuristic, in most cases by a considerable amount.

Second, the optimality gap is for the most part small, on the order of 10% to 20% versus the

upper bound. Further, we observe the performance of the VF-Heuristic is mostly unaffected

by the congestion index (at least on the ranges that we test). This is in contrast to the

myopic heuristic whose performance degrades as the congestion increases. Next, we use the

VF-Heuristic to evaluate the hierarchical approach to the pricing and allocation problem.
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Table 2.3: Performance of the value function heuristic-TFA

(T,M,K) CIy REV F−Heur REMyopic UEV F−Heur UEMyopic

(6,5,6) 0.70 0.9945 0.9907 0.9497 0.9461
(6,4,6) 0.57 0.9794 0.9626 0.8811 0.8661
(6,3,5) 0.58 0.9972 0.9887 0.9499 0.9418
(6,3,8) 1.27 0.9744 0.8959 0.9305 0.8555
(6,3,7) 1.11 0.9958 0.8735 0.8327 0.7305

(a) Small size cases;

(T,M,K) CIy UEV F−Heur UEMyopic

(16,5,32) 1.00 0.7518 0.5666
(16,5,32) 1.11 0.8461 0.5939
(16,5,32) 1.24 0.6938 0.4047
(16,5,32) 1.42 0.7692 0.5388
(16,5,32) 1.66 0.7084 0.4719

(24,5,100) 1.01 0.8816 0.8767
(24,5,100) 1.12 0.8435 0.8788
(24,5,100) 1.26 0.8203 0.8011
(24,5,100) 1.44 0.8444 0.8317
(24,5,100) 1.68 0.7643 0.6760
(24,5,100) 2.02 0.6472 0.5491

(32,5,96) 1.00 0.8651 0.8600
(32,5,96) 1.11 0.7839 0.7868
(32,5,96) 1.25 0.7630 0.7406
(32,5,96) 1.42 0.6764 0.6623
(32,5,96) 1.66 0.6542 0.6131
(32,5,96) 2.00 0.5845 0.5329

(32,7,200) 1.00 0.9023 0.9043
(32,7,200) 1.11 0.8605 0.8650
(32,7,200) 1.25 0.8324 0.7884
(32,7,200) 1.42 0.8246 0.7828
(32,7,200) 1.66 0.7387 0.6377
(32,7,200) 2.00 0.7187 0.6208

(b) Medium size cases;

(T,M,K) CIy UEV F−Heur UEMyopic

(48,9,500) 1.00 0.9121 0.8743
(48,9,500) 1.11 0.8248 0.6444
(48,9,500) 1.25 0.9035 0.7045
(48,9,500) 1.42 0.9651 0.6756
(48,9,500) 1.66 0.9556 0.4987
(48,9,500) 2.00 0.8312 0.3002

(96,9,500) 1.00 0.9643 0.9227
(96,9,500) 1.11 0.9538 0.8256
(96,9,500) 1.24 0.9570 0.7787
(96,9,500) 1.42 0.9128 0.7204
(96,9,500) 1.66 0.9296 0.7134
(96,9,500) 1.99 0.9051 0.5959

(c) Large size cases.
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Table 2.4: Performance of the value function heuristic-MCA

(T,M,K) CIy CIc REV F−Heur REMyopic UEV F−Heur UEMyopic

(6,5,6) 0.90 0.70 0.9948 0.9962 0.8975 0.8987
(6,4,6) 0.73 0.57 0.9842 0.9847 0.9244 0.9249
(6,3,5) 0.78 0.58 0.9830 0.9709 0.8390 0.8286
(6,3,8) 1.67 1.27 0.9013 0.8332 0.8851 0.8182
(6,3,7) 1.48 1.11 0.9128 0.8778 0.8929 0.8587

(a) Small size cases;

(T,M,K) CIy CIc UEV F−Heur UEMyopic

(16,5,32) 1.00 0.83 0.8427 0.6797
(16,5,32) 1.11 0.83 0.8767 0.6989
(16,5,32) 1.24 0.83 0.8991 0.6853
(16,5,32) 1.42 0.83 0.7916 0.6743
(16,5,32) 1.66 0.83 0.9188 0.789

(24,5,100) 1.01 0.83 0.9525 0.9594
(24,5,100) 1.12 0.83 0.9705 0.9671
(24,5,100) 1.26 0.83 0.9538 0.9264
(24,5,100) 1.44 0.83 0.9854 0.9521
(24,5,100) 1.68 0.83 0.9661 0.9229
(24,5,100) 2.02 0.83 0.9650 0.9487

(32,5,96) 1.00 0.83 0.9375 0.9358
(32,5,96) 1.11 0.83 0.9241 0.9201
(32,5,96) 1.25 0.83 0.9387 0.9367
(32,5,96) 1.42 0.83 0.9202 0.9202
(32,5,96) 1.66 0.83 0.9246 0.9252
(32,5,96) 2.00 0.83 0.9427 0.9405

(32,7,200) 1.00 0.83 0.9386 0.9259
(32,7,200) 1.11 0.83 0.9587 0.9448
(32,7,200) 1.25 0.83 0.9731 0.9227
(32,7,200) 1.42 0.83 0.9660 0.9337
(32,7,200) 1.66 0.83 0.9269 0.9060
(32,7,200) 2.00 0.83 0.9621 0.9339

(b) Medium size cases;

(T,M,K) CIy CIc UEV F−Heur UEMyopic

(48,9,500) 1.00 0.83 0.9502 0.9014
(48,9,500) 1.11 0.83 0.9519 0.8238
(48,9,500) 1.25 0.83 0.9374 0.8486
(48,9,500) 1.42 0.83 0.9803 0.8522
(48,9,500) 1.66 0.83 0.9780 0.8251
(48,9,500) 2.00 0.83 0.9745 0.8448

(96,9,500) 1.00 0.83 0.9740 0.9441
(96,9,500) 1.11 0.83 0.9628 0.9140
(96,9,500) 1.24 0.83 0.9872 0.9382
(96,9,500) 1.42 0.83 0.9878 0.9395
(96,9,500) 1.66 0.83 0.9703 0.9264
(96,9,500) 1.99 0.83 0.9723 0.9520

(c) Large size cases.
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2.5 Numerical Computations: Hierarchical Planning vs. Non-

Hierarchical Planning

In this section we conduct numerical studies to demonstrate the possible benefits that can be

obtained through implementing the proposed hierarchical planning approach. We use Monte

Carlo simulation for all the numerical computations. We demonstrate the magnitude of the

increase that a hierarchical approach can have over a non-hierarchical planning approach. Then,

we study the effects of various target flows, customer valuation patterns, and service levels.

2.5.1 Implementation Details

Recall that in our hierarchical planning approach, we first solve the strategic level problem that

produces a pricing vector p̃ and a target flow ỹ. These are then presented to the customers who

at the operational level need to determine their demand schedules. We want to compare how

well the hierarchical planning approach perform as opposed to the non-hierarchical planning

approach. The difference between the hierarchical planning approach (HP) and non-hierarchical

planning approach (NHP) is defined by their respective demand generating processes, their

schedule selection processes, and the pricing structure used to evaluate their resulting revenues.

We next define the processes for both cases.

Demand Generating and Schedule Selection Process

For our numerical testing, we divide the reservation horizon into K periods as described

above and assume that the probability of an arrival in a period is given by δ = λ/K and the

probability of no arrival is then 1− δ. That is, we simulate a discretized Poisson process. Upon

arrival customers request one of their demand schedules. Under HP, class-m customers choose

from Im in Sm according to ψm
i . Depending upon the information known, the values of ψm

i may

vary. Further, these values may be related to behavioral choices. Therefore, we will compare

several reasonable values of the ψm
i ’s. First, customers may choose their preferred demand

pattern by randomizing uniformly over their indifference set. Second, customers may try to
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weight their choices based on the posted target flow. If customers observe the firms acceptance

and rejection over a long time, they may plan their schedule to fit the firm’s preferred target

flow. Further, if the firm post their ideal schedule X∗, the customers may weight their choice

by X∗. This could produce an outcome considered the best possible, comparable to using the

ideal schedule itself. Thus we suggest the following three possible definitions of ψm
i ,

ψm
i =


1

|Im| Under uniform weighting;

ỹ′am
i∑

i∈Îm
ỹ′am

i
Weighted by ỹ;

xm∗
i∑

i∈Sm
xm∗
i

Weighted by X∗.

(2.34)

Under NHP, class-m customers choose schedules from Sm. We assume that customers choose

their preferred demand pattern by randomizing uniformly over their feasible demand set, i.e.,

ψm
i = 1

|Sm| .

Pricing Structure

The HP and NHP differ in their pricing structures. The HP uses both the nominal prices

p̄ and the variable prices p̃ generated at the strategic level. The NHP only uses nominal prices

as these are known prior to solving the strategic level problem. Recall that the time dependent

variable prices may have a degree of freedom in their definition. Because we wish to compare

the HP and NHP problem solution revenues, we need to define their price structure carefully.

In practice, one might expect that the firm would choose p̃ to maximize its revenue subject

to some individual rationality constraints on the customers’ choices. However, these prices are

unknown. Using these prices would result in revenues that are not comparable with those of

the NHP approach. Thus, we choose the variable price p̃ such that p̃
′
ỹ = 0. The revenue of

both approaches are then comparable.

Initially, we assume the customers prefer service delivery in the middle of the service period.

That is, their value for service has a peak at T/2. We will define this valuation pattern and

compare it to two alternatives in Section 2.5.3.

We use the following parameters in our numerical examples. In the demand generating

process, we let the probability of an arrival in a reservation period, i.e., λ/K, to be between
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0.2 and 0.5. Depending on the value of M , the probability of an arrival for a class-m customer

varies and is approximately equal to 1
2M . (For M = 5, the values are 0.08, 0.10, 0.16, 0.07,

and 0.09; for M = 7, the values are 0.04 0.05, 0.02, 0.02, 0.03, 0.02, and 0.04; for M = 9,

the values are 0.04, 0.03, 0.06, 0.08, 0.09, 0.09, 0.03, 0.05, and 0.03). In doing so, we are

attempting to model an environment with small, medium and large customers. The values of

lm are as follows: for M = 5, l = (2, 3, 5, 8, 10)′; for M = 7, l = (1, 2, 5, 6, 7, 10, 15)′; for M = 9,

l = (1, 2, 5, 8, 10, 15, 20, 30, 40)′. We vary the value of T , M , and K in the test cases as shown in

the Tables 2.4 to 2.6. We also vary the value of θ from 0.6 to 1, where θ is defined as in P5 (g)

as ỹ ≤ θc. That is, we use a scalar θ that expresses the maximum target flow as a percentage

of the firm’s capacity.

The nominal price is as follows: p̄ = (20, 20, 18, 18, 16)′ forM = 5; p̄ = (20, 20, 20, 18, 18, 16, 16)′

for M = 7; p̄ = (20, 20, 20, 20, 20, 18, 18, 16, 16)′ for M = 9. Thus customers with medium vol-

ume receive 10% discount, and large volume receive 20% discount, off the base price of 20 per

order. We set the rejection penalty cost to be 5 per order, i.e., hm = 5 ∗ lm. The congestion

cost is assumed to be linear wm
t (yt) = wm

t ∗ yt, where wm
t is a value dependent on the size of

the problem. wm
t is between 1 and 2 for T = 16 and 32; wm

t is between 0.2 and 0.5 for T = 48

and 96. Further, we consider both the TFA and MCA models for HP. For the MCA model, we

assume linear overflow cost κt, where the value of κt varies between 1 and 5. We assume that

the target flow is unknown and is obtained through P5.

We present the operational revenue (average revenue over the sample paths) and the strategic

efficiency. The latter is the ratio of the operational revenue to the optimal strategic revenue.

This defines how well the HP performs relative to the base case.

2.5.2 Overall Performance

In this subsection, we compare the performance of the HP and NHP for both the TFA and

MCA models.

We consider four test cases (T,M,K): (16,5,100), (32,7,200), (48,9,500) and (96,9,500) and

vary the service level from 0.7 to 0.9. In all cases, we assume ψm
i ’s are uniformly weighted over

Im.
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Table 2.5 presents the operational revenues and the strategic efficiencies for the TFA and

MCA models. Comparing the results, we observe that the MCA model, as expected produces

higher revenue than the TFA model. In general the operational revenue ratio is higher in the

TFA case. We observe that for the most part, as the service level decreases, i.e., the system

becomes more congested due to the reduce of capacity, the relative performance of the HP

over the NHP increases. Finally, we observe that the strategic efficiency increases as the size

of the problem increases. The strategic efficiency in MCA model are greater than 1 in some

cases, because overbooking is not allowed at the strategic level. When calculating the strategic

revenue, the capacity assignment is limited to the target flow. If overbooking above the target

flow is allowed, more operational revenue might be generated. Based on the observations in

Table 2.5, we conclude that the HP improves the operational revenue on average by 16%.

Table 2.5: Hierarchical Planning vs. No Planning

(T,M,K) Model θ SEHP SENHP ORHP ORNHP ORHP

ORNHP

(16,5,100)

TFA
0.9 0.7238 0.6625 3480 3185 1.09
0.8 0.7265 0.6319 3359 2922 1.14
0.7 0.7308 0.6060 3136 2600 1.20

MCA
0.9 0.8725 0.8119 4195 3903 1.07
0.8 1.0069 0.8371 4656 3871 1.20
0.7 1.0855 0.8920 4658 3827 1.21

(32,7,200)

TFA
0.9 0.7139 0.5347 3361 2517 1.33
0.8 0.5934 0.5249 2793 2471 1.13
0.7 0.5771 0.4937 2488 2129 1.16

MCA
0.9 0.7955 0.7416 3745 3491 1.07
0.8 0.8168 0.7447 3845 3506 1.09
0.7 0.9290 0.8068 4006 3479 1.15

(48,9,500)

TFA
0.9 0.8705 0.7325 53755 45234 1.18
0.8 0.8176 0.6838 48141 40267 1.19
0.7 0.9023 0.6594 47451 34679 1.36

MCA
0.9 0.9619 0.8283 59401 51150 1.16
0.8 1.0126 0.8565 59627 50433 1.18
0.7 1.2429 0.9423 65364 49557 1.31

(96,9,500)

TFA
0.9 0.7801 0.7486 124194 119175 1.04
0.8 0.8478 0.6889 127251 103407 1.23
0.7 0.7793 0.6560 103695 87293 1.18

MCA
0.9 0.8768 0.8440 139574 134356 1.03
0.8 1.0088 0.8801 151426 132106 1.14
0.7 1.1252 0.9809 149717 130517 1.14
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2.5.3 The Effect of Service Level

The service level is one of the factors that has impact on the optimal target flow decision of the

firm and thus ultimately affects the operational revenues (see constraint (g) in P5). However,

the effect of service level is not immediately obvious. In the MCA model, a target flow planned

according to a high service level may allow many customers to be scheduled at the same time

at the strategic level. However, at the operational level, such a target flow may not perform

well.

We observe that the two figures below have quite different shapes. In Figure 2.1, the

operational revenue increases as the service level increases. This is because in the TFA model,

the target flow is a hard constraint. Any flow above the target flow is not accepted. Therefore,

as the service level increases, there is more capacity and thus the operational revenue increases.

Note that in some cases (not shown), there is some fluctuation in the HP operational revenue

as θ increases. Note also that the operational revenue in the HP case tends to follow the NHP

case. However, as can be observed in Figure 2.1, the operational revenue for the HP drops

when θ = 100%. We explain this by noting that the target flow for the high service level

allocates capacity away from the peak. Because customers under the NHP do not choose their

delivery schedules based on the target flow, they may not receive capacity and the operational

revenue will suffer. In comparison, we observe in Figure 2.2 that the operational revenues for

the HP case decreases as the service level increases (the maximum operational revenue occurs

at θ = 65%). This is a significant result. Recall that the strategic revenue must increase as

the service level increases. The decrease in the operational revenue expresses the inefficiency

of the HP approach for the MCA model. If θ is considered an artificial variable put in place

by the firm to ensure the target flow spread out, then what we observe is that the firm can

benefit from such a restriction at the operational level. This means that at the strategic level,

reserving some safety capacity is beneficial.
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Figure 2.1: The effect of service level on the operational revenue under the TFA case

Figure 2.2: The effect of service level on the operational revenue under the MCA case

2.5.4 The Effect of Customer Valuation Patterns

The customers’ valuations of service may vary with the service delivery time. Our previous

analysis assumes that customers have higher valuation for the middle of the service period.

Customers in other settings, however, may have different valuation patterns. In this subsection,
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we study how changes in customer valuation patterns affect the HP and NHP performance.

We consider three different valuation patterns: Peak, Uniform and Decreasing. We generate

customer valuation patterns as follows, for each class-m, we choose vm from a uniform random

variable distributed between 50 and 120 and use it as a base valuation. Let ṽmt be the valuation

of a class-m customer for a unit service at service period t and ṽm = (ṽm1 , · · · , ṽmT )′. We

determine ṽmt through the following functions,

ṽmt =


0.8vm + 0.8vm

T t, ∀t ≤ T
2 , 1.6v

m − 0.8vm

T t,∀t > T
2 Peak;

vm, ∀t = 1, · · · , T Uniform;

1.2vm − 0.4vm

T t, ∀t = 1, · · · , T Decreasing.

Observe that the peak and decreasing patterns allow a maximum 20% deviations from the

base valuation. Then, the the valuation of a class-m customer for a demand pattern i can be

determined by vmi = ṽm′
ami .

Tables 2.6 presents the results for the TFA and MCA models, respectively. We observe that

the valuation pattern has little consistent effect on the HP vs. the NHP.

Table 2.6: Sensitivity to the valuation patterns

(T,M,K) Model Valuation Pattern SEHP SENHP ORHP ORNHP ORHP

ORNHP

(16,5,100)

TFA
Peak 0.7406 0.6206 3425 2870 1.19

Uniform 0.6901 0.5969 3318 2870 1.15
Decreasing 0.7483 0.5977 3593 2870 1.25

MCA
Peak 0.9803 0.8352 4534 3862 1.17

Uniform 0.8390 0.8034 4034 3862 1.04
Decreasing 0.8583 0.8044 4121 3862 1.06

(32,7,200)

TFA
Peak 0.5855 0.4838 2756 2278 1.21

Uniform 0.5650 0.4838 2660 2278 1.16
Decreasing 0.5937 0.4838 2795 2278 1.22

MCA
Peak 0.8170 0.7434 3846 3500 1.09

Uniform 0.7595 0.7434 3575 3500 1.02
Decreasing 0.7873 0.7434 3706 3500 1.05

(48,9,500)

TFA
Peak 0.7982 0.6755 47001 39774 1.18

Uniform 0.8007 0.6755 47151 39774 1.18
Decreasing 0.6869 0.6755 40444 39774 1.01

MCA
Peak 1.0009 0.8548 58934 50334 1.17

Uniform 1.0118 0.8548 59576 50334 1.18
Decreasing 0.9068 0.8548 53396 50334 1.06
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2.5.5 The Effect of Information Disclosed

Tables 2.7 shows the operational revenue of the HP and NHP under the three weighting sce-

narios for the TFA and MCA models, respectively. We use “U”, “Y” and “ X” to denote the

un-weighted, weighted by target flow ỹ, and weighted by the optimal assignment X∗ cases,

respectively. The tests are conducted under various demand patterns. In Table 2.7, we observe

that the ORHP

ORNHP (X) and SEHP (X) are consistently higher than that of the weighted by target

flow and unweighted cases for both the TFA and the MCA models. We observe that neither the

unweighted nor the weighted by target flow cases dominate one another. However if the cus-

tomers know the flow in the equilibrium solution and choose their demand patterns according

to this flow, then the firm can achieve a higher operational revenue. Thus it is not enough for

the customers to simply choose based on what they perceive to be the firm’s preference through

the expressed target flow. They also have to know how the firm prefers to allocate the target

flow.

Table 2.7: Sensitivity to the information disclosed

(T,M,K) Model Valuation SEHP SEHP SEHP ORHP

ORNHP
ORHP

ORNHP
ORHP

ORNHP

Pattern (U) (Y) (X) (U) (Y) (X)

(16,5,100)

TFA
Peak 0.7406 0.7561 0.7606 1.19 1.21 1.22

Uniform 0.6901 0.6889 0.7974 1.15 1.15 1.33
Decreasing 0.7483 0.7487 0.7918 1.25 1.25 1.32

MCA
Peak 0.9803 0.9609 0.9812 1.17 1.15 1.17

Uniform 0.8390 0.8525 0.9498 1.04 1.06 1.18
Decreasing 0.8583 0.8975 0.9104 1.06 1.11 1.13

(32,7,200)

TFA
Peak 0.5855 0.6150 0.6432 1.21 1.27 1.32

Uniform 0.5650 0.6017 0.6338 1.16 1.24 1.30
Decreasing 0.5937 0.5952 0.6542 1.22 1.23 1.35

MCA
Peak 0.8170 0.8281 0.8761 1.09 1.11 1.17

Uniform 0.7595 0.7815 0.8758 1.02 1.05 1.17
Decreasing 0.7873 0.7849 0.8696 1.05 1.05 1.16

(48,9,500)

TFA
Peak 0.7982 0.7842 0.9023 1.18 1.16 1.33

Uniform 0.8007 0.8343 0.8373 1.18 1.23 1.23
Decreasing 0.6869 0.7266 0.8516 1.01 1.07 1.26

MCA
Peak 1.0009 0.9521 1.1087 1.17 1.11 1.29

Uniform 1.0118 0.9920 1.0011 1.18 1.16 1.17
Decreasing 0.9068 0.8977 1.0340 1.06 1.05 1.20
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2.6 Conclusions

In this study, we consider a special class of demand management and capacity planning prob-

lems where customers of several classes are unable to change their schedule instantaneously in

response to price incentives. In particular, we study a hierarchical planning model to consider

the special requirement that price decisions and capacity allocation decisions must be made at

different points of time.

The model is composed of a strategic level and an operational level. At the strategic level,

we attempt to shed light on the following questions: (1) What target flow should a firm choose

to maximize its profit? (2) If the target flow is given, what price should the firm charge their

customers to induce the target flow? We first show that a simple price strategy where the same

price difference is imposed on all customer classes can induce any feasible target flow. Then

we establish the procedures of finding an optimal target flow and the price strategy to induce

the target flow. The planning at this strategic level helps to better match the supply and the

demand at the operational level. At the operational level, we treat the regulated deterministic

demand at the strategic level as stochastic arrivals. Customers arrive randomly with a non-

flexible schedule. We study the structural properties of the admission system and propose

heuristic algorithms to allocate the capacities.

Our numerical results demonstrate that by pricing the capacity to induce a preferred de-

mand profile, the hierarchical planning approach can effectively balance capacity and demand

and hence substantially improves the system performance. By comparing with the naive non-

hierarchical planning approach, we make the following observations:

1. The hierarchical planning model improves the operational revenue and upper bound effi-

ciency significantly. The operational revenue improves approximately up to 20% by our

experiments.

2. The hierarchical planning provides higher operational revenues for various customer val-

uation patterns.

There are several extensions to the above models that can be considered. In this study, cus-

tomers are assumed to have perfect information regarding the other customers when responding
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to the variable prices through an equilibrium behavior. A more general setting of imperfect

information might be considered in the future. As a second extension, elastic demand can be

considered. This is a very important extension because the demand in some real life scenarios

would be sensitive to prices. Finally, the numerically analysis is limited by data availability.

The numerical computation is conducted by Monte Carlo simulation due to the lack of data.

The results could be validated using actual data.
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Chapter 3

Pricing, Capacity Planning and

Location on a Single-Facility

Network

3.1 Introduction

The price charged for service, the location of the facilities, and the processing capacity of

the facilities are among the most important decisions a service provider needs to make in a

competitive market. Many service companies are starting to consider the price and time (travel

time and service waiting time) factors when designing their service network. For example,

Walmart neighborhood market stores usually average about 42,000 square feet in size, and are

typically located in the highly populated areas, while Sam’s Club stores (which tend to charge

lower prices) have an average size of approximately 133,000 square feet, and are usually located

in the suburban areas (Walmart, 2009). Many similar cases can be found, for example, the price

and the number of gas pumps vary at different gas stations. Six Flags, a chain of amusement

parks, prices their seasonal passes differently at different locations. A 2009 seasonal pass at

Discovery Kingdom park in Vallejo, CA costs $49.99, while the same type of ticket at Magic

Mountain Park in Los Angels, CA sells for $59.99. A parking lot is more expensive and crowded

in a downtown area than in a suburban area. A Starbucks coffee in a convention center costs
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more than the one in a residential community a block away, because business customers are

willing to pay a premium to save time on traveling. Macdonald and Nelson (1991) found that

fixed market basket of goods costs about 4 percent less in suburban locations than in central

city stores. Motivated by an integrative, customer-focused decision making, our objective is

to find out how to make the capacity, pricing and location decisions strategically to maximize

profit when customers are sensitive to both price and time.

The price, location and capacity decisions are closely related to each other. To maximize

profit, the interactions among these decisions must be well understood. The nature of these

interactions, however, are not immediately obvious. Larger capacity may not necessarily lead

to a higher profit. More capacity on one hand will tend to reduce the waiting time, but on the

other hand may attract more customers that could increase the congestion and thus lengthen the

waiting time. In addition, a higher price possibly comes with a self-adjusted reduced demand,

but a reduced demand implies lower average waiting times if all other parameters remain fixed,

and demand can go up again as a result.

Most facility location models ignore these interactions entirely and simply assume that cus-

tomers choose the closest facility available for service. From a customer’s perspective, however,

the choice of visiting facilities may not be based just on easy access (proximity), but also on

the price set by the firm and the service quality, often measured in terms of the average waiting

time.

The objective of this study is to explore the interplay of three strategic decisions: the

location of service facilities, the price charged for service, and the available service capacity.

In the current Chapter, we start by analyzing a single facility network. The analysis to the

multi-location setting is extended in the following Chapter. We consider the following setting.

A profit maximizing firm is to locate a single facility on a general network, to select the capacity

and to determine the price to charge for service. Stochastic demand is generated from nodes

of the network. Customers are both price and time sensitive. The basic research questions we

attempt to address include: (1) What is the optimal capacity and price for a given location? (2)

How does the optimal price depend on location of the capacity? (3) How sensitive are location,

price and capacity decisions to the elasticity of the customers with respect to these factors.
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The paper is organized as follows. Section 3.2 contains the literature review. In Section 3.3

we present our model and assumptions. Properties of the optimal solutions are discussed in

Section 3.4 and Section 3.5. In Section 3.6, we analyze a special case of our model and examine

the impact of several key factors on the firm’s profit through an example. Finally in Section

3.7 we provide some concluding remarks.

3.2 Literature Review

Many researchers have considered customer response to congestion and price when designing a

service network. Two streams of literature in location models are related to this topic: spatial

pricing models and facility location and congestion models. Spacial pricing models consider

the joint decision of locating facilities and pricing service when customers are sensitive to the

price and travel distance. Wagner and Falkson (1975) were the first to study the pricing and

location problem on a network facing price sensitive demands. Later work, for example, Hansen

et al. (1981), investigates a plant location problem under uniform delivered pricing, where the

firm decides where and how many facilities to locate, and what uniform price to charge. In a

generalized version of the uncapacitated facility location problem, Hanjoul et al. (1990) consider

a firm whose objective is to maximize profits by choosing its price and the number, locations,

sizes and market areas of its plants. Other relevant papers include Logendran and Terrell (1991)

and So (2000). Berman et al. (2007) give a review in spatial pricing models.

Facility location and congestion models focus on location problems in the presence of

stochastic demand and congestion. This topic has been extensively studied and it continues

to be an active area (See Berman and Krass (2002) for an overview). The most recent works

include Aboolian et al. (2008) and Elhedhli (2006), who study a service system design problem

seeking to locate a set of service facilities with sufficient capacities and to assign stochastic

customer demands to each facility, so as to minimize the fixed costs (of opening facilities and

acquiring service capacities) and variable costs (for access and waiting). Berman and Kaplan

(1987) examine a problem of locating a set of facilities on a network where the demand for

service at the facility consists of a decay function of the average time customers spent in the
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system. Berman and Drezner (2005) extends the model in Berman and Kaplan (1987) and

locate more than one facility on the network and consider a service level constraint.

These research has investigated the interactions among various subsets of the price, location,

and capacity space. This is practical when customers have little simultaneous information on

price and waiting times. Traditionally, the pricing and capacity decisions were made separately

by the marketing and operations functional areas within the firms. With the development of

information technology, customers have access to more and more information.

To the best of our knowledge, the only paper that considers the price, location and capacity

simultaneously is Dobson and Stavrulaki (2007), who study a monopolist selling a single product

to time-sensitive customers located on a line segment. Our work is different from theirs in two

ways. First, instead of locating on a line segment, we analyze the problem on a network

setting, where a facility can be placed anywhere on the network. Second, we assume that

customer utility functions reflect the trade-off preferences among price, location and waiting

time. The customers respond the firm’s decisions by adjusting their demand, which increases

with their utilities. In Dobson and Stavrulaki (2007)’s work, customers react the firm’s decision

by ordering or not, based on their reservation prices.

3.3 A General Model

We consider a profit maximizing firm who offers a single service at a price p and serves customers

located on a general network V (N,L), where N is a set of nodes and L is a set of links. dix

denotes the shortest distance from node i to a facility at x ∈ V . Customer demand occurs at the

nodes of the network and is sensitive to the traveling distance d, the price paid for service p and

the expected waiting time w. We model the facility service process as a general queueing system

such as a G/G/1 system, in which demand arrives with a mean arrival rate λ, and is processed

with a mean service rate µ. We assume that the coefficients of variation of inter-arrival time

and service time are exogenously determined, denoted as νa and νs, respectively. Customers

experience an average delay of w(µ, λ), which depends on the capacity µ and the total demand

λ arriving at the facility. The firm incurs a cost C · µ per unit time, where p > C > 0. The
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firm’s objective is to locate the facility in V , select a uniform price p and determine the capacity

µ so as to maximize its profit.

There is a maximum demand associated with each node i ∈ N , denoted as λmax
i . The

effective demand generated at node i that travels to facility located at x ∈ V is assumed to be

a general distributed random variable with mean λix, which decays with respect to the travel

distance to the facility dix, the price paid for the service p and the expected waiting time w.

Let F (d) ∈ [0, 1], where F ′(d) ≤ 0 is the decay function associated with travel distance d,

let G(p) ∈ [0, 1], where G′(p) ≤ 0 is the decay function associated with the price p, and let

H(w) ∈ [0, 1], where H ′(w) ≤ 0 is the decay function associated with the expected waiting

time at the service facility w. Assuming that the demand decays from the three factors are

multiplicative, λix then satisfies

λix = λmax
i F (dix)G(p)H(w), ∀i ∈ N, ∀x ∈ V. (3.1)

Therefore, the total demand rate arriving at the facility located at x ∈ V is,

λ =
N∑
i=1

λmax
i F (dix)G(p)H(w). (3.2)

The single facility problem formulation is

maxx∈V,p∈P,µ∈U R(x, p, µ) = p · λ− Cµ (3.3)

s.t. λ =
N∑
i=1

λmax
i F (dix)G(p)H(w(µ, λ)).

In this formulation, the total demand rate (3.2) is a function of waiting time and waiting

time in turn is a function of the total demand rate. The feedback loop control is a special

feature of our model, which represents the interactions among the price, the travel distance

and the expected waiting time. The decisions of price and capacity are intertwined with each

other: providing more capacities could attract more customers, but more customers may cause

an increased service waiting time, which leads to a reduced demand. Similarly, charging a
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higher price may reduce demand, which then implies a decrease in waiting time, which may

cause demand to increase. It becomes even more complex when location factor is also taken

into consideration, as demand also varies with differences in travel distances. To maximize

the profit, the firm must understand the complex interplay between these factors and carefully

calibrate the decisions of location, price and capacity.

3.4 Optimal Location of the Facility

We first investigate the problem of locating the facility when the price charged for service and

the capacity of the facility are given. The potential locations of the facility are on the whole

network, thus is an infinite set. We will show in this section that the optimal location of the

facility can be reduced to a finite set.

Consider a link (a, b) ∈ L with a length of lab on the network. Let x be a point on link

(a, b), i.e., x ∈ (a, b). With a bit abuse of notation, let dax = x. We define xi as a break point

on the link if xi satisfies,

xi + dia = lab − xi + dib, for some i ∈ N.

That is, xi is a point of location where demands at node i is indifferent when traveling to xi

through node a or node b. Further, we define the set of break points on the link as

Bab = ∪∀i∈N{xi ∈ (a, b)} ∪ {0, lab}.

We sort the break points inBab in ascending order. Denote x̂ and x̃ as two arbitrarily consecutive

break points on link (a, b). We call an interval between any two consecutive break points a

primary region. Assuming that x ∈ (x̂, x̃), we have the following propositions that shows the

optimal location exists on the nodes of the network under a mild assumption, namely that F (d)

is convex.

Proposition 3.1. If F (dix) is convex, then A(x)
.
=
∑

i∈N λmax
i F (dix) is convex on any primary

region.
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Proof. Let Na be the set of nodes where the shortest distance to x is through a. Let Nb be the

set of nodes where the shortest distance to x is through b.

A(x) can be expressed as

A(x) =
∑
i∈Na

λmax
i F (x+ dia) +

∑
i∈Nb

λmax
i F (lab + dib − x).

Thus, we have the first and second order conditions

A′(x) =
∑
i∈Na

λmax
i F ′(x+ dia)−

∑
i∈Nb

λmax
i F ′(lab + dib − x), (3.4)

A′′(x) =
∑
i∈Na

λmax
i F ′′(x+ dia) +

∑
i∈Nb

λmax
i F ′′(lab + dib − x). (3.5)

Since F ′′(x) ≥ 0, we must have A′′(x) ≥ 0 by (3.5). Therefore, A(x) is a convex function of

x on any primary region.

Proposition 3.2. If F (dix) is convex, then A(x) is convex on any link.

Proof. Since A(x) is convex on any primary region, it suffices to show that for any break point

x̂ on (a, b), limϵ→0A
′(x̂− ϵ) ≤ limϵ→0A

′(x̂+ ϵ). Suppose x̂ is the breakpoint with respect to a

node i0 only. So that at x̂− ϵ i0 ∈ Na and at x̂+ ϵ i0 ∈ Nb

From equation (3.4) and (3.5), we have

A′(x̂− ϵ) =
∑
i∈Na

λmax
i F ′(x̂− ϵ+ dia)−

∑
i∈Nb

λmax
i F ′(lab + dib − (x̂− ϵ)),

A′(x̂+ ϵ) =
∑
i∈Na

λmax
i F ′(x̂+ ϵ+ dia)−

∑
i∈Nb

λmax
i F ′(lab + dib − (x̂+ ϵ))

−λmax
i0 F ′(x̂+ ϵ+ dia)− λmax

i0 F ′(lab + dib − (x̂+ ϵ)).

As ϵ → 0, the first two items of A′(x̂ − ϵ) and A′(x̂ + ϵ) are the same. Since F ′(x) ≤ 0, the

negatives of the third and the fourth items of A′(x̂+ ϵ) are nonnegative. Therefore, we have

lim
ϵ→0

A′(x− ϵ) ≤ lim
ϵ→0

A′(x+ ϵ).

Thus, A(x) is convex on the entire link (a, b).
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Proposition 3.3. If F (d) is convex, given p and µ, the optimal location exists in N .

Proof. The first order condition of (3.2) (λ = A(x)G(p)H(w)) w.r.t. x gives

λ′(x) = A′(x)G(p)H(w) +A(x)G(p)H ′(w)w′(λ)λ′(x).

Then, we have

λ′(x) =
A′(x)G(p)H(w)

1−A(x)G(p)H ′(w)w′(λ)
. (3.6)

We know that w′(λ) ≥ 0 and H ′(w) ≤ 0. The denominator in (3.6) thus is positive as the second

term A(x)G(p)H ′(w)w′(λ) ≤ 0. The numerator in (3.6) shows that λ′(x) and A′(x) have the

same sign. Since A(x) is convex on any link, A′(x) is non-decreasing on link (a, b). Consider

three cases: (1) If A′(0) ≥ 0, then λ′(x) ≥ 0, ∀x ∈ [0, lab], the optimal location is at node b; (2)

If A′(0) ≤ 0 and A′(lab) ≤ 0 , then λ′(x) ≤ 0, ∀x ∈ [0, lab], and the optimal location is at node

a; and (3) If A′(0) ≤ 0 and A′(lab) ≥ 0, then λ(x) is non-increasing until λ′(x) = A′(x) = 0 for

some x ∈ [0, lab], and λ(x) is non-decreases as x goes toward node b and the optimal location is

either at node a or at node b.

Applying the above argument to the whole network, we conclude that one of the two nodes

always gets higher arrival rate than that of the link. For fixed p and µ, the optimal location of

the facility exists in N .

3.5 Optimal Price and Capacity Assignment Given a Facility

Location

We have reduced the search for the optimal location to a finite set. We next study the problem

of setting the price and capacity to maximize the profit when the facility location is known.

Once the profit maximizing problem at a fixed facility location has been addressed, the best

location can be determined by comparing profits across all possible locations. We first analyze

the problem assuming that the facility is operating as a G/G/1 queueing system. Further, we

simplify it to a M/M/1 system to gain more insights.
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3.5.1 G/G/1 System

In a G/G/1 system, the expected waiting time, which includes the queueing time plus service

time, can be approximated by (Hopp and Spearman, 2000),

w(µ, λ) ≈ νλ

µ(µ− λ)
+

1

µ
, µ > λ, (3.7)

where ν = νa+νs
2 is the average of the squared coefficient of variations of the arrival process and

service process, denoted as νa and νs, respectively.

We start from studying the first order conditions of the firm’s profit (3.3) w.r.t. p and µ

with location x fixed, which are

∂R(p,µ)
∂p = λ+ p ∗ dλ

dp
= 0, (3.8)

∂R(p,µ)
∂µ = p ∗ dλ

dµ
− C = 0. (3.9)

To find dλ
dp , we hold the capacity of the facility µ and location x fixed. From (3.2) and (3.7),

we have the derivatives w.r.t. p,

dw

dp
=

ν dλ
dp

(µ− λ)2
, (3.10)

dλ

dp
= A(x)G′(p)H(w) +A(x)G(p)H ′(w)

dw

dp
. (3.11)

Therefore from (3.10) and (3.11), we have

dλ

dp
=

A(x)G′(p)H(w)

1− νA(x)G(p)H′(w)
(µ−λ)2

. (3.12)

To find dλ
dµ , we hold location x and price p fixed, from (3.2) and (3.7) we have the derivatives

w.r.t. µ,

dw

dµ
= − 1

µ2
− νλ(2µ− λ)

µ2(µ− λ)2
+

ν dλ
dµ

(µ− λ)2
, (3.13)

dλ

dµ
= A(x)G(p)H ′(w)

dw

dµ
. (3.14)
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Therefore from (3.13) and (3.14), we have

dλ

dµ
=
A(x)G(p)H ′(w)(− 1

µ2 − νλ(2µ−λ)
µ2(µ−λ)2

)

1− νA(x)G(p)H′(w)
(µ−λ)2

. (3.15)

Substitute (3.12) and (3.15) into (3.8) and (3.9) , we have

G(p)(1− νA(x)G(p)H ′(w)

(µ− λ)2
) + pG′(p) = 0, (3.16)

A(x)G(p)H ′(w)(− p

µ2
− νλ(2µ− λ)p

µ2(µ− λ)2
+

νC

(µ− λ)2
)− C = 0. (3.17)

Proposition 3.4. The effective demand decreases in price p, with location x and capacity µ

fixed.

Proof. The results follows from (3.12), where the numerator is less than or equal to 0 and the

denominator is positive because of the non-increasing property of H(w).

Proposition 3.5. The effective demand increases in capacity µ, with location x and price p

fixed.

Proof. The results follows from (3.15). Since H ′(w) ≤ 0 and µ > λ and − 1
µ2 − νλ(2µ−λ)1

µ2(µ−λ)2
≤ 0,

the numerator of (3.15) is positive. The denominator is positive as well because of the non-

increasing property of H(w). Therefore dλ
dµ ≥ 0.

Proposition 3.6. The optimal price and capacity of the facility together with the equilibrium

arrival rate and waiting time satisfy (3.2), (3.7), (3.16) and (3.17)

Proposition 3.6 offers the necessary conditions of the optimal price and capacity, the equi-

librium demand rate and waiting time. However, the system is highly nonlinear. The following

proposition shows that when (x, p, µ) are given, there is always a unique equilibrium that defines

the arrival rate and waiting time.

Proposition 3.7. For any (x, p, µ), (3.2) and (3.7) defines a unique equilibrium arrival rate

λ∗ and waiting time w∗.
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Proof. From (3.2), arrival rate λ decreases in w. From (3.7), λ increases with w. Therefore

there exists one unique arrival rate and waiting time given any (x, p, µ) by the continuity of

function λ and w.

3.5.2 M/M/1 System

In M/M/1 system, the squared coefficients of variation νa = 1 and νs = 1. Expression (3.7) is

exact and is simplified as

w =
1

µ− λ
, µ > λ. (3.18)

Alternatively, the relationship between capacity and waiting time is µ = λ + 1/w. There is

one to one correspondence between the waiting time and the capacity in both a G/G/1 and a

M/M/1 system. However, in a M/M/1 system, we found that using the waiting time as decision

variable is more convenient. The problem using w as decision variable becomes

maxx∈V,p∈P,w R(x, p, w) = p · λ− Cµ

s.t. λ = A(x)G(p)H(w),

µ = λ+ 1/w.

Using w and p as decision variables, the firm’s profit can be expressed as

R(x, p, w) = (p− C)A(x)G(p)H(w)− C/w.

The first order condition of the revenue function w.r.t. p and w with location x fixed are,

∂R(p, w)

∂p
= A(x)H(w)(G(p) + (p− C)G′(p)) = 0, (3.19)

∂R(p, w)

∂w
= (p− C)A(x)G(p)H ′(w) + C/w2 = 0. (3.20)

The next two propositions give necessary conditions for the optimal price and capacity with

location fixed.
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Proposition 3.8. The price decision is independent of the location and capacity decisions. The

optimal price is a solution of

G(p) + (p− C)G′(p) = 0. (3.21)

Proposition 3.9. If location x and price p are known, the optimal equilibrium waiting time

w∗ satisfies

A(x)G(p)H ′(w∗)w∗2 = C/(C − p). (3.22)

The equilibrium arrival rate to the facility and the optimal capacity of the facility hence satisfy

λ∗ = A(x)G(p)H(w∗), (3.23)

µ∗ = λ∗ + 1/w∗. (3.24)

The proofs of Proposition 3.8 and 3.9 follow directly from the first order conditions in (3.19)

and (3.20). To find the sufficient condition, we need to know the the curvature of the objective

value. The curvature of the profit function depends on the specific form of the decay function.

For example, if the price and/or waiting time delay function are linear (the second derivatives

vanish), it can be verified that the profit function is concave w.r.t. p and/or w. Later we will

show that the profit function is unimodal when the decay functions are exponential.

3.5.3 An Example

The pricing decision is intertwined with the location and capacity decisions in a G/G/1 system.

However, the pricing decision is independent of the location and capacity decisions in aM/M/1

system. We now use a small example to examine the inter-relations of the three decision

variables and investigate the independence of the pricing decision.

Consider a 2-node network as shown in Figure 3.1. The demand rates at each node are

λmax
1 = 50 and λmax

2 = 20. We assume exponential decay functions, F (d) = exp(−αd), G(p) =

exp(−βp), and H(w) = exp(−γw), where α, β and γ are the demand elasticities to price, travel

distance and waiting time respectively. The unit capacity cost is C = 0.5. A firm is about to

locate a facility on the network, select the price to charge for service and choose an appropriate
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capacity level.

Figure 3.1: A 2-node network -single facility

We study the relationship of two of the three decision variables when the third one is fixed.

1. Location and Price.

Recall that the optimal price in M/M/1 satisfies (3.21) and is independent of the location

decision. However, we cannot derive the same conclusion for a G/G/1 system, in which

the optimal price satisfies (3.16). Comparing (3.16) and (3.21), the dependency of the

price and location seems related to the squared coefficient of variation and customers’

elasticities. Figure 3.2 plots the firm’s profit w.r.t. price when α = 0.4. The locations of

the facility are at node 1, a point that is 0.2 distance away from node 1, and node 2. The

price elasticity is set at two levels, β = 0.2 and β = 1. The squared coefficient of variations

are set at ν = 1 and ν = 10. ν = 1 is the special case of M/M/1, ν = 10 represents a

system with a high variation of interarrival and service times. Figure 3.2 shows the four

plots of the combinations (β = 0.2, ν = 1), (β = 0.2, ν = 10), (β = 1, ν = 1) and

(β = 1, ν = 10). The value of the optimal price and the profit are shown as a pair of

numbers on the graph. We can see that the optimal prices of all the three locations are

the same in each subplot.

The dependency of price and location could also relate to customers’ sensitivity to dis-
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tance. When customers are more sensitive to the travel distance, price might vary more

w.r.t. location. Figure 3.3 is a similar plot to Figure 3.2 with higher distance elasticity

coefficient (α = 2). In Figure 3.3, we can see that when the price elasticity and the

squared coefficient of variation are high (β = 1, ν = 10), the optimal price varies with the

location, but the optimal prices are still close to each other.

Figure 3.4 shows the relationship of the demand with respect to the price. The overall

demand is decreasing w.r.t. price. The higher the squared coefficient of variation the

lower the demand with all others being fixed. The higher the price elasticity the lower the

demand with all others fixed. The maximum profit is obtained when the marginal benefit

of increasing the price equals the marginal cost due to the decreases of the demand.

In summary, location decisions impact the magnitude of the demand and the profit ob-

tained. However pricing decision is relatively independent of the location decision except

for the cases exhibiting extremely high variation of the demand inter-arrival and service

times (ν > 10) and the demands are highly sensitive to the travel distance (α > 2).
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Figure 3.2: Profit vs. price with capacity fixed (α = 0.4)
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Figure 3.3: Profit vs. price with capacity fixed (α = 2)
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Figure 3.4: Demand vs. price with capacity fixed (α = 2)
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2. Location and Capacity.

Figures 3.5 and 3.6 show the capacity impact on the total demand and the profit for

various combinations of waiting time elasticity and squared coefficient of variation. The

waiting time elasticity is set at two levels γ = 0.1 and γ = 1. The squared coefficient

of variations are set to ν = 1 and ν = 10. The four plots are for the four combinations

(γ = 0.1, ν = 1), (γ = 0.1, ν = 10),(γ = 1, ν = 1) and (γ = 1, ν = 10). Figure 3.5 shows

that the demand increases w.r.t. the capacity. The higher the waiting time elasticity

and/or the coefficient of variations, the more sensitive the demand is to the capacity.

Comparing the curvature of the plot (γ = 0.1, ν = 1) with the other three, we can see

that the curvature in the plot (γ = 0.1, ν = 1) is flatter than others. The maximum profit

is obtained when the marginal profit improvement from increasing the demand equals the

marginal cost of increasing the capacity.

Figure 3.6 shows that the location and the capacity decisions are correlated with each

other. From the four plots, we can see that capacity decisions must be made together

with the location decisions to achieve maximum profit.
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Figure 3.5: Demand vs. capacity with price fixed (α = 0.4, β = 0.4)
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Figure 3.6: Profit vs. capacity with price Fixed (α = 0.4, β = 0.4)
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3. Price and Capacity.

Figure 3.7 shows the profit contour w.r.t. price and capacity when the facility is fixed

at node 1. The demand elasticities are α = 0.4, β = 0.4, and γ = 0.8. The squared

coefficient of variation is set to ν = 2 and ν = 10. We can see that the price and the

capacity decisions need to be considered jointly to achieve the maximum profit. Trying

to find an optimal solution with either one of them arbitrarily fixed could result in a

suboptimal solution.

Figure 3.7: Profit contour vs. price and capacity at node 1
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3.6 M/M/1 System with Exponential Decay Functions

Propositions 3.8 and 3.9 provide the necessary conditions of the optimal price and capacity,

however the solution that satisfies the conditions may not be sufficient to provide optimality,

due to two reasons: (1) the curvature of the revenue is unknown; and (2) the solution may not

be unique depending upon the specific form of the decay functions. To simplify the problem and

gain more insight of the interplay among the three decision variables, we use two assumptions

for the remainder of this study: (a) The facility operates as a M/M/1 queueing system; and

(b) The demand decay functions are exponential.
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Let F (d) = exp(−αd), G(p) = exp(−βp), and H(w) = exp(−γw), where α, β and γ are

demand elasticities w.r.t the travel distance, the price paid for service and the waiting time

respectively. The formulation of the problem can be expressed as

maxx∈V,p∈P,µ∈U R(x, p, µ) = p · λ− C · µ

s.t. λ =
N∑
i=1

λi exp(−αdix − βp− γw),

w =
1

µ− λ
.

Proposition 3.10. Given x, w(p, µ) is a decreasing convex function w.r.t. (p, µ).

Proposition 3.11. Given x, λ(p, µ) decreases in p, increases in µ and concave in (p, µ).

Proof of Propositions 3.10 and 3.11. Substitute the demand decay functions F (d) = exp(−αd),

G(p) = exp(−βp), and H(w) = exp(−γw) into (3.10), (3.12), (3.13), and (3.15). Let ν = 1, we

have

dλ

dp
=

−βλ
1 + γw2λ

, (3.25)

dw

dp
=

−w2βλ

1 + γw2λ
, (3.26)

dλ

dµ
=

γw2λ

1 + γw2λ
, (3.27)

dw

dµ
=

−w2

1 + γw2λ
. (3.28)

The second derivative of the waiting time gives

d2w

dµ2
=

γ2w6λ+ 2w3

(1 + γw2λ)3
,

d2w

dp2
=

β2w2λ(1 + 2wλ)

(1 + γw2λ)3
,

d2w

dµdp
=

βw3λ(2− γw)

(1 + γw2λ)3
.
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The determinant of the Hessian matrix of w(p, µ) is

2β2w5λ

1 + γw2λ
≥ 0.

Therefore w(p, µ) is convex w.r.t. (p, µ).

The second derivative of the demand rate gives

d2λ

dµ2
=

γw3λ(wγ − 2)

(1 + γw2λ)3
, (3.29)

d2λ

dp2
=

β2λ− 2β2γw3λ3

(1 + w2fγ)3
, (3.30)

d2λ

dµdp
= −βγw

2λ(2wλ+ 1)

(1 + γw2λ)3
. (3.31)

The determinant of the Hessian matrix of λ(p, µ) is

−2β2γw3λ2

1 + γw2λ
≤ 0.

Therefore λ(p, µ) is concave w.r.t. (p, µ).

Proposition 3.12. There exists a unique optimal price p∗ and capacity µ∗ given any x such

that

p∗ =
1

β
+ C, (3.32)

µ∗ =
2γL(x) + βγC

4L(x)2
, (3.33)

w∗ =
2

γ
L(x), (3.34)

λ∗ =
βγC

4L(x)2
, (3.35)

where

L(x) = −LambertW
(
− 1

2

(
βγC exp(βp∗)∑n

i=1 λi exp(−αd(i, x))

) 1
2
)
.

Proof. Using (3.3) (Recall that λ = A(x)G(p)H(w)) and (3.26), the first order of the revenue
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w.r.t. p and gives

∂R(p, µ)

∂p
= λ+ p

dλ

dp
= λ

(
1− p

(
β + γ

dw

dp

))
= λ

(
1− βp

1 + γw2λ

)
= 0. (3.36)

Using (3.3) and (3.27), the first order of the revenue w.r.t. µ gives

∂R(p, µ)

∂µ
= p

dλ

dµ
− C =

γw2λp

1 + γw2λ
− C = 0. (3.37)

Solving (3.36) and (3.37), we have p∗ = 1
β + C and the optimal capacity µ∗ satisfies

w2λ = βC/γ, (3.38)

Thus,

w2
N∑
i=1

λi exp
(
− αdix − βp∗ − γw

)
= βC/γ, (3.39)

which can be rewritten as

w2 exp(−γw) = βC exp(βp∗)

γ
∑N

i=1 λi exp(−αdix)
. (3.40)

Further we rewrite (3.40) as,

(−1

2
γw)2 exp(−1

2
γw)2 =

βγC exp(βp∗)

4
∑N

i=1 λi exp(−αdix)
. (3.41)

Since w > 0 and −1
2γw < 0, (3.41) is equivalent to,

(−1

2
γw) exp(−1

2
γw) = −

( βγC exp(βp∗)

4
∑N

i=1 λi exp(−αdix)
) 1

2 , (3.42)

which is a form of LambertW function and has a solution on its principle branch, i.e, 1
2γw < 1,

w∗ = −2

γ
L(x) (3.43)
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where

L(x) = −LambertW
(
− 1

2

(
βγC exp(βp∗)∑n

i=1 λi exp(−αd(i, x))

) 1
2
)
.

Substitute w∗ into (3.18) and (3.38), then

µ∗ =
2γL(x) + βγC

4L(x)2
,

and

λ∗ =
βγC

4L(x)2
.

Next, we show that the first order solution p∗ and µ∗ is indeed an optimal solution.

Claim 1, R(p, µ) is unimodal in p, the unique stationary point gives the maximum

solution.

Let p̂ be the stationary point that satisfies ∂R(p,µ)
∂p = 0. If p < p̂, by the convexity of w (see proof

of Proposition 3.11), dw
dp |p=p ≤ dw

dp |p=p̂ < 0. Thus from (3.36), we have 1− p ∗ (β + γ dw
dp |p=p) >

1 − p̂ ∗ (β + γ dw
dp |p=p̂) = 0. Hence R(p, µ) is increasing in p when p < p̂. If p > p̂, by the

convexity of w,dwdp |p=p ≥ dw
dp |p=p̂, thusm 1−p∗ (β+γ dw

dp |p=p) < 1− p̂∗ (β+γ dw
dp |p=p̂) = 0. Hence

R(p, µ) is decreasing when p > p̂. Therefore, R(p, µ) has only one stationary point in p where

the optimal revenue is obtained.

Claim 2, R(p, µ) has one or two stationary point in µ, µ∗ is the larger root that

satisfies ∂R(p,µ)
∂µ = 0.

The second derivative of the revenue gives

∂2R(p, µ)

∂µ2
= p

d2λ

dµ2
.

Therefore, the curvature of the revenue depends on d2λ
dµ2 , (3.29). Let w

∗(p, µ) be the equilibrium

waiting time given (p, µ). Since w∗(p, µ) decreases w.r.t. µ, we start from a sufficiently small

capacity µ0 ≥ 0 such that w∗(p, µ0) > 2/γ and therefore d2λ
dµ2 |µ=µ0 ≥ 0. As µ ≥ µ0 increases,

the waiting time w∗(p, µ) decreases to some point µ̂ such that w∗(p, µ̂) = 2/γ or d2λ
dµ2 |µ=µ̂ = 0.

Therefore R(p, µ) is convex in [µ0, µ̂]. When µ ≥ µ̂, w∗(p, µ̂) < 2/γ or d2λ
dµ2 |µ=µ̂ ≤ 0 . Therefore

R(p, µ) is concave in [µ̂,∞]. The optimal µ is either µ0 or some µ such that ∂R(p,µ)
∂µ = 0. Since
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limµ→0R(p, µ) = 0, optimal µ is the one that satisfies ∂R(p,µ)
∂µ = 0. Therefore optimal µ is the

larger root that satisfies ∂R(p,µ)
∂µ = 0. Therefore, µ∗ in (3.33) is the larger stationary point and

the optimal capacity.

Proposition 3.12 provides many interesting insights. (3.32) shows that the optimal price is

independent of the location decision, and the optimal price decreases with β, i.e., optimal price

is lower when the demand is more sensitive to price. The optimal capacity in (3.33) is closely

related with location through L(x) and increases with γ. That is, the optimal capacity gets

bigger as the demand gets more sensitive to the waiting time.

Let ρ = λ/µ be the system utilization rate. Proposition 3.13 shows the utilization rate at

the optimal price and capacity.

Proposition 3.13. When the price and capacity are optimal, the utilization rate ρ∗ = λ∗/µ∗

of the system satisfies,

ρ∗ =
βC

2L(x) + βC
, (3.44)

Proof. It follows directly from the ratio of (3.35) and (3.33).

Proposition 3.13 shows that the utilization rate ρ∗ decreases as α or γ increases (L(x)

increases in α and γ).

From Propositions 3.3 and 3.12, it is straightforward to use the following algorithm to solve

the single facility problem:

Algorithm - Single facility

Step1: Obtain p∗ = 1
β + C.

Step2: For each x ∈ N , calculate w∗, µ∗.

Step3: Evaluate the revenue function and choose the location that gives the best revenue.
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3.6.1 An Example

Consider a 3-node network as shown in Figure 3.8 . The demand rates at each node are λ1 = 30,

λ2 = 10, and λ3 = 20. The demand elasticities to price, travel distance and waiting time are

α = 0.1, β = 0.2, and γ = 0.3, respectively. The unit capacity cost is C = 3. A firm is about to

locate a facility on the network, select the price to charge for service and choose the appropriate

capacity level.

Figure 3.8: A 3-node network - single facility

Note that the price is independent of the location and the capacity decisions. Proposition

3.12 tells us the optimal price (p∗ = 1/β + C = 8) and the optimal capacities and revenues at

each node, which are summarized in Table 3.1.

We observe that the optimal location is at node 1, which gives a profit of 43.74. In Figure

3.9, we plot the profit surface with respect to prices and capacities when the facility is at node

1. We can see that the profit is a single mode function of prices and capacities.
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Table 3.1: Optimal capacity, price and profit at various locations

Node Optimal Optimal Equilibrium Equilibrium Profit
Price Capacity Demand Waiting Time

1 8 11.9795 9.7694 0.4525 42.2166
2 8 11.5788 9.4097 0.4610 40.5414
3 8 11.4164 9.2642 0.4646 39.8644

Figure 3.9: The profit surface at node 1
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3.7 Conclusions

We considered how a firm should integrate the three decisions of locating a single facility,

charging the price for service and determining the capacity of the facility to maximize profit,

taking into account that customer demand is influenced by the firm’s decisions. We studied the

single facility model on a general network, where the demand arrival process and the service

times are stochastic and demand rate is a decreasing function of the price, the travel distance

and the expected waiting time at the facility. We established the existence of equilibrium

demand and waiting time. We showed that the optimal location exists on the nodes of the

network so that the choice of locations is reduced to a finite set. If service and arrival processes

can be represented by the M/M/1 system, the optimal price is independent of the location and

capacity decisions. Furthermore, when the demand is exponential with respect to the three

decision variables, the optimal capacity can be expressed in a closed form for a fixed facility

location. These results provide the following managerial insights:

1. Pricing decisions can be made independently of location decisions in a broad range of

demand types. According to our numerical examples, when demand is not very sensitive

to travel distances, and the average variance of the demand inter-arrival time and service

time is not extremely large, the optimal price is insensitive to the location of the facility.

2. Capacity decisions however must be made with the consideration of the location of the

facility. Our numerical examples showed that the optimal capacities vary greatly across

different locations of the facilities with all other parameters fixed.

3. When the location of the facility is known, pricing and capacity decisions need to be made

jointly to achieve maximum profit.

We acknowledge that the model formulated here does not account for all factors that may

influence strategic decisions of a firm. To provide better understand the interactions of demand

flow with the capacity and price, we limited our analysis to a single facility case. Extension

to a multiple facility case is analyzed in the next Chapter. In addition, in our model, the firm

behaves as a Monopolist, the competition is considered implicitly through the elasticity of the
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demand. Future studies may consider competition between multiple firms or locating facilities

on a network with pre-existing facilities.
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Chapter 4

Pricing, Capacity Planning and

Location on a Multiple-Facility

Network

4.1 Introduction

Determining the locations of facilities, the service capacities, and choosing the price to charge

for service are the three most important strategic decisions a service provider needs to make.

Traditionally, pricing, location planning and capacity allocation are made separately. To maxi-

mize profit and improve service quality, a joint pricing, location, and capacity allocation scheme

is necessary.

There is a growing consensus among researchers and practitioners alike that the three strate-

gic decisions should be integrated. However, it is not immediately clear how the decisions should

be combined and under what conditions an integrated decision is superior to separated deci-

sions. To answer these questions, we need to understand customers’ behaviors in response to

the strategic decisions. A typical assumption in location literature is that customers patron the

closest facility for service and their decisions of where to shop are independent of each other.

The assumption works well for many situations. However, it may not be sufficient enough to

characterize customers’ true behaviors. As in our setting, a customer may decide to visit a
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particular facility because that facility offers faster service and better price, not necessarily the

closest travel distance. Customers from the same node may find it beneficial to visit different

facilities to avoid congestion. Moreover, due to the presence of congestion, a customer’s choice

of service depends not only on his own decision but also on other customers’ preferences as well.

In this study, we focus on a customer-oriented approach to design a multiple facility service

network. In contrast to many studies, customers choose service not by finding the closest facility

but by the facility providing the best utility. When facing multiple facilities, customers choose

where to shop and adjust the total demand according to their utilities. They evaluate the

service according to the price to pay and the time to spend and then choose the one that is

most favorable.

The multiple-facility model to be presented here is partly an extension of the single facility

model in Chapter 3. Solving the problem for multiple facilities is much more difficult than

for the single facility case where customers patron the only available facility for service and

the firm does not need to worry about customers switching to other facilities. When there are

multiple facilities, customers have multiple choices of where to shop. The final choice is subject

to customers’ decision rules, for example, choosing the closest facility. We incorporate this

customer choice behavior in our model, assuming all customers behave strategically so that the

service system will be finally in an equilibrium state such that no customers has an incentive

to alter her choice.

The organization of this chapter is as follows. Section 4.2 is the literature review. Section

4.3 provides some background information and introduces the assumptions and notations of

the models. Section 4.4 presents a system optimization model where customers can be dictated

to achieve the maximum profit of the system. Section 4.5 presents a user optimization model,

where customers’ equilibrium behavior is captured. Section 4.6 analyzes the properties of the

optimal solutions and the insights developed in this section will be carried forward to develop

the heuristic algorithms in Section 4.7. Section 4.8 shows the numerical results. The last section

4.9 is the conclusion and managerial insights.
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4.2 Literature Review

Locating facilities with consideration of customer behaviors has received considerable attention

in both the Economics and Operations Management literature. We review only the literature

directly related to our study. Eiselt et al. (1993) and Drezner and Hamacher (2002) provide

comprehensive reviews of the broader literature.

This work falls in the general category of Location Problems with Stochastic Demand and

Congestion(LPSDC). Berman and Krass (2002) give an overview of LPSDC problems. Origi-

nated from coverage-type location models, LPSDC has been a very active research area. For

example, Marianonov and Serra (1998) study a location-allocation problem for a congested

system, where customer demands are assumed to be generated by a Poisson process, the dis-

tribution of service time is exponential, each facility act as a M/M/1/k queueing system with

finite capacity k. The objective is to locate m facilities to capture as much demand as possible.

In contrast to Marianonov and Serra (1998) assuming customers can be assigned to any open

facility within the coverage radius, Berman et al. (2006) study a location model with stochastic

demand and congestion, where each customer will tend to patronize the closest open facility.

They considered two potential source of lost demand, demand lost due to insufficient coverage

and demand lost due to congestion. The objective is to find the minimum number of facilities,

and their locations, so that the amount of demand loss from either source does not exceed

certain pre-set levels. The most recent works include Aboolian et al. (2008) and Aboolian et al.

(2009).

None of above studies, however, incorporates the consumer choice equilibrium into their

models. When there are congestions in the system, customers decisions are correlated with

each other and over time they learn to distribute themselves more “evenly”, so that the system

is in an equilibrium state, where no customers has any incentive to change her choice. One

feature of our model is to capture this type of customer equilibrium behaviors.

Another area of literature closely related to our work is the location models with elastic

demands. In Huff (1964), customers split their demands between several facilities with the

frequency of a visit to a facility increasing with the attractiveness of the facility and decreasing
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with the travel distance. Berman and Kaplan (1987) consider the time that customers spend

at the service facilities and presented an algorithm to find the supply and demand equilibrium.

Our work is similar to Berman and Kaplan in defining the supply and demand equilibrium, but

we also add one more dimension of price and consider the customer choice equilibrium.

The customers choice equilibrium in this work are modeled using traffic equilibrium which

has traditionally been developed for transportation planning and has been penetrated in recent

years to other scientific fields such as telecommunication, power management and health care

etc. For example, Zhang et al. (2009) study a health care facility network design problem with

congestion. In discussing a traffic equilibrium model, Wardrop (1952) introduces the Wardrop

equilibrium in which customers traveling between the same origin and destination have the

same utility. Further, Dafermos (1980) uses the theory of variational equalities to establish

the existence of a traffic equilibrium and devises an algorithm for computing an equilibrium.

Aashtiani and Magnanti (1981) present a traffic equilibrium model considering the congestion

effect, and discuss existence and uniqueness of the equilibria.

Berman and Drezner (2005) maybe the closest work related to our study, where location of

congested facilities with distance sensitive demand is discussed. However, whereas in Berman

and Drezner demand generated at a node is distance dependent and service level constraint

is applied, our demand depends on customer’s utility, which is a exponentially decay function

of distance, price and waiting time. In Berman and Drezner’s model, customers from a node

have to choose only one facility for service. In our model, customers can choose any facility for

service as long as it is justified by their utilities. Customers at a node need not visit the same

facility, and they can split the demand to different facilities. In equilibrium, nobody has any

incentive to alter her choice.

4.3 Assumptions and Backgrounds

Consider a general network V (N,L), where N is the set of nodes and L is the set of links.

A service provider is about to locate a fixed number of facilities on V , and in the mean time

to decide the prices to charge for service and set up the capacities. We assume that facilities
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must be located at nodes. Let M ⊆ N be the set of potential locations of the facilities. Let

S ⊆ M be the set of locations of the facilities decided. We use |S| to denote the total number

of facilities to be located. Let p = {pj , j ∈ S} and µ = {µj , j ∈ S} be the set of prices charged

for service and the capacity levels to be set up, respectively.

The demands are generated from the nodes of the network. Customers are sensitive to the

travel distances, prices for service and the expected waiting times at the facilities. Assume there

is a facility at j, the posted price for service is pj and the expected waiting time at the facility

is wj , then the disutility of a customer from node i to visit a facility at node j for service is,

uij = αdij + βpj + γwj , ∀i ∈ N, ∀j ∈ S.

We allow fractional flows, i.e., customers from the same node may choose multiple facilities.

Let λi be the maximum demand at node i, and yij be the proportion of the maximum demand

at node i to visit facility j,
∑

j∈S yij = 1, ∀i ∈ N , then the actual demand rate from node i to

facility j is defined as an exponential decay function of the disutility uij as follows,

vij = λiyij exp(−αdij − βpj − γwj), ∀i ∈ N,∀j ∈ S. (4.1)

Alternatively, we may say that the actual demand rates must satisfy the following flow conser-

vation constraint,

∑
j∈S

vij exp(αdij + βpj + γwj) = λi, ∀i ∈ N,∀j ∈ S. (4.2)

We will use the actual demand flow vij or the proportion of demand yij interchangeably as

variables indicating customer demand distribution throughout this chapter.

We assume the demands arrive according to a Poisson process and the service rate follows an

exponential distribution. We assume only one server at each facility, so that the service process

acts as a M/M/1 queueing system. Thus, the expected system waiting time for a facility at

node j is

wj =
1

µj −
∑

i∈N vij
, ∀j ∈ S. (4.3)
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The firm’s profit then is:

maxR(S, p, µ) =
∑
j∈S

(pj
∑
i∈N

vij − C · µj), (4.4)

where vij is subject to customers’ decision rules.

Note that the final flow in (4.1) depends on customers’ decision rules. If we assume that cus-

tomers cooperate with the firm to obtain system optimal distribution of flow (e.g., if customers’

assignment to facility can be centrally enforced), we obtain a system optimization model. Al-

ternatively, if customers behave as non-cooperating players, then we obtain a traffic equilibrium

where nobody has any incentive to deviate unilaterally. This results in a user equilibrium model.

We discuss the models in the following two sections respectively.

4.4 System Optimization Model

In the system optimization model, we assume that customers cooperate with the firm (either

willingly or by the firm’s enforced assignment to facilities) to maximize its profit. Note that

demands are still affected by the travel distances and the prices through the utility function.

Let xj be the binary indicator variable equal to 1 if a facility is located at j and 0 otherwise.

The model can now be formulated as a Mixed Integer Nonlinear Programming as follows,

maxp,µ,x
∑
j∈M

(
pj
∑
i∈N

vij − C · µjxj
)

s.t.
∑
i∈N

vij ≤ µj ∀j ∈M,∑
j∈M

vij exp(αdij + βpj + γwj) = λi ∀i ∈ N, (P1)

vij ≤ Kxj ∀i ∈ N, ∀j ∈M,∑
j∈M

xj = |S|,

xj = 0, 1 ∀j ∈M,

vij ≥ 0 ∀i ∈ N, ∀j ∈M,
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where wj is expressed using the decision variables as follows:

wj =
1

µj −
∑

i∈N vij
∀j ∈M.

The first constraint in P1 ensures that enough capacity is provided to satisfy demand. The

second constraint is a flow conservation constraint as defined in 4.2. The third constraint is to

ensure that customers visit only the nodes where a facility is located. K is a sufficiently large

number so that there is no flow constraint when xj = 1. The fourth constraint is to limit the

total number of facilities to be |S|. P1 can be solved with standard non-linear programming

algorithms (although the non-linearity in the constraints presents computational challenges).

4.5 User Equilibrium Model

In the user equilibrium model, a customers chooses the facilities that maximize her utility. The

system is in equilibrium if no customer will deviate from the current choice to seek for a better

utility. As such, customers may not visit the closest facility and customers from a node may

not visit the facility at the same node.

To model this customers’ choice equilibrium, we use the classical traffic equilibrium model

(Nagurney, 1999), which shows how users on a congested transportation network choose travel

paths to minimize travel cost from origins to destinations. If the firm has decided the locations,

prices and capacities, we define our customer choice equilibrium using the similar definition to

traffic equilibrium as,

Definition 4.1. Customer Choice Equilibrium (v∗,u∗) is in an equilibrium if, once established,

no customer has any incentive to alter her choice. This state is characterized by the following

conditions, which must hold for every node i ∈ N and every node-facility (i, j) pair:

uij(v
∗)

 = u∗i if v∗ij > 0;

≥ u∗i if v∗ij = 0.
∀i ∈ N,∀j ∈ S. (4.5)

The consumer choice equilibrium can be formulated as a generalized nonlinear complemen-
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tary problem:

(uij(v)− ui)vij = 0 ∀i ∈ N, ∀j ∈ S, (a)

uij(v)− ui ≥ 0 ∀i ∈ N, ∀j ∈ S, (b)∑
j∈M vij −Di(u) = 0 ∀i ∈ N, (c) (P2)

vij ≥ 0 ∀i ∈ N, ∀j ∈ S, (d)

ui ≥ 0 ∀i ∈ N. (e)

In this formulation:

vij is the flow between node i and facility j;

v is the vector of(v11 · · · v|N |1, v12 · · · v|N |2, · · · · · · , v1|S| · · · v|N ||S|)
′;

ui is an accesibility variable, the lowest disutility for Node-Facility pair (i, j);

u is the vector of (u1, · · · , u|N |)
′;

Di(u) is the demand rate originated from node i, Di(u) = λi exp (−ui);

uij(v) is the disutility function if node i choose facility j for service

uij = αdij + βpj + γwj where wj = 1/(µj −
∑

i∈N vij)

(a) and (b) in Problem P2 model the customer choice equilibrium law requiring that for

any node-facility pair (i, j), the disutility for all choices of service with positive flow vij > 0, is

the same and equal to ui. ui is no more than the disutility for any node-facility pair that has no

flow, i.e., vij = 0. Constraint (c) requires that the total flow originated from node i equals the

total demand Di(u), which in turn depends upon the congestion in the facility through utility

variable u.

Theorem 4.1. P2 has at least one equilibrium solution.

Proof. The proof follows directly from Theorem 5.4 of Aashtiani and Magnanti (1981). uij(v) is

a positive continuous function for all node-facility pair (i, j) and Di(u) is a continuous function

that is bounded from above. Therefore P2 has a solution.

Let xj be the binary indicator variable equals to 1 if a facility is located at j and 0 otherwise.

The firm’s problem is to maximize its revenue while customers act optimally to maximize their
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utilities,

maxp,µ,x
∑

j∈M
(
pj
∑

i∈N vij − Cxjµj
)

s.t.
∑

i∈N vij ≤ µj ∀j ∈M,

vij ≤ Kxj , ∀i ∈ N, j ∈M,

(uij − ui)vij = 0 ∀i ∈ N, j ∈M,

uij − ui ≥ 0 ∀i ∈ N, j ∈M,∑
j∈M vij − λi exp(−ui) = 0 ∀i ∈ N, (P3)

vij ≥ 0 ∀i ∈ N, j ∈M,

ui ≥ 0 ∀i ∈ N,∑
j∈M xj = |S|,

xj = 0, 1 ∀i ∈ N, j ∈M,

uij = αdij + βpj +
γ

µj−
∑

i∈N vij
+K(1− xj) ∀i ∈ N, j ∈M.

where K is a sufficiently large constant. The problem is a Mathematical Problem with

Equilibrium Constraints (MPEC), which is in general very difficult to solve.

4.6 Properties of Optimal Solutions

In this section, we study the properties of the optimal solutions in Problem P3. The locations

of the facilities are assumed to be known. We focus on finding the optimal price and capacity

allocation, and how the customers would respond to the firm’s decisions.

4.6.1 Optimal Price and Capacity Allocation

If we know the locations of the facilities and how customers distribute their flows (i.e., either

{vij , i ∈ N, j ∈ S} or {yij , i ∈ N, j ∈ S} are known), we have the following results that

characterize the optimal price and capacity.

Proposition 4.1. The optimal price is,

p∗j =
1

β
+ C,∀j ∈ S, (4.6)
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and the optimal capacity of a facility at node j satisfies

µ∗j =
2γLj(y) + βγC

4Lj(y)2
,∀j ∈ S, (4.7)

where

Lj(y) = −LambertW
(
− 1

2

(
βγC exp(βp∗j )∑n

i=1 λiyij exp(−αdij)

) 1
2
)
, ∀j ∈ S. (4.8)

Proof. As a service facility is operating as a M/M/1 queue, from (4.1) and (4.3), we have,

µj =
∑
i∈N

λiyij exp(−αdij − βpj − γwj) + 1/wj . (4.9)

The right-hand-side of the above equation is a decreasing function of wj , so there is one corre-

sponding capacity for any waiting time. Thus if we can find the optimal waiting time, we will

know the optimal capacity. We next use wj as decision variables. The firm’s profit function

thus can be expressed as,

R(p, w) =
∑
j∈S

(
(pj − C)

∑
i∈N

λiyij exp(−αdij − βpj − γwj)− C/wj

)
.

The first order conditions of the profit function w.r.t. pj and wj gives

pj =
1

β
+ C, ∀j ∈ S, (4.10)

−γ(pj − C)
∑
i∈N

λiyij exp(−αdij − βpj) exp(−γwj) + C/w2
j = 0, ∀j ∈ S. (4.11)

The latter can be rewritten as,

−
(

γC

4(pj − C)
∑n

i=1 λiyij exp(−αdij − βpj)

) 1
2

= −1

2
γw∗

j exp(−
1

2
γw∗

j ). (4.12)

which is an LambertW function that has a real solution when γ
2wj < 1. Thus the optimal

waiting time is,

w∗
j = −2

γ
LambertW

(
−
(

γC

4(pj − C)
∑n

i=1 λiyij exp(−αdij − βpj)

) 1
2
)
. (4.13)
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Substitute the optimal price (4.10) into (4.13), then

w∗
j =

2

γ
Lj(y), ∀j ∈ S,

where

Lj(y)
.
= −LambertW

(
−
(

βγC exp(1 + βC)

4
∑n

i=1 λiyij exp(−αdij)

) 1
2
)
.

Substitute w∗
j into (4.9), we have

µ∗j =
2γLj(y) + βγC

4Lj(y)2
,∀j ∈ S,

λ∗j =
βγC

4Lj(y)2
, ∀j ∈ S.

Therefore, the optimal revenue is,

R∗ =
∑
j∈S

γC(1− 2Lj(y))

4Lj(y)2
.

4.6.2 Customer Equilibrium Flow

To maximize its profit, the service provider needs to consider how customers distribute their

flows. If the locations of the facilities, the prices and the capacities are all known, customers will

distribute their demands to maximize their utilities. The equilibrium demand at each facility

locations depends on how the customers choose the facilities for service. In this section, we will

show that the customer choice equilibrium can be solved by a convex optimization problem.

Theorem 4.2. A flow v∗ is in equilibrium if and only if it satisfies the following variational

inequality problem:

F (v∗)T (v− v∗) ≥ 0, v ≥ 0, (4.14)

where F (v) = (F11(v) · · ·F|N |1(v), F12(v) · · ·F|N |2(v), · · · , F1|S|(v) · · ·F|N ||S|(v))
T and

Fij(v
∗) = αdij + βpj +

γ

µj −
∑

i∈N v∗ij
+ ln

∑
j∈M

v∗ij − lnλi, ∀i ∈ N, ∀j ∈ S. (4.15)
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Proof. We first show that if v∗ is in equilibrium, i.e., v∗ satisfies (4.5), then it also satisfies

(4.14). Note from (4.5) for a fixed allocation pair (i, j),

(uij(v
∗)− u∗i ) ∗ (vij − v∗ij) ≥ 0. (4.16)

From P2 (c), the demand flow conservation requires that

u∗i = lnλi − ln
∑
j∈S

v∗ij . (4.17)

We also have,

uij(v
∗) = αdij + βpj +

γ

µj −
∑

i∈N v∗ij
. (4.18)

Substitute (4.17) and (4.18) into (4.16), we have

(αdij +βpj +
γ

µj −
∑

i∈N v∗ij
+ln

∑
j∈S

v∗ij − lnλi) ∗ (vij − v∗ij) ≥ 0, ∀vij ≥ 0, ∀i ∈ N, j ∈ S. (4.19)

Summing over all demand nodes and facility locations, then

∑
i∈N

∑
j∈S

(αdij + βpj +
γ

µj −
∑

i∈N v∗ij
+ ln

∑
j∈S

v∗ij − lnλi) ∗ (vij − v∗ij) ≥ 0, (4.20)

which in vector notation, gives (4.14).

We next show that if v∗ satisfies (4.14) then it is in equilibrium, i.e., (4.5) is satisfied. Since

(4.19) and (4.14) are equivalent, we use (4.19) here for ease of explanation. Consider pair (k, l),

let vij = v∗ij , ∀ij ̸= kl in (4.19), then (4.19) is simplified as:

(αdkl + βpl +
γ

µl −
∑

k∈N v∗kl
+ ln

∑
l∈S

v∗kl − lnλk) ∗ (vkl − v∗kl) ≥ 0,∀k ∈ N, l ∈ S, (4.21)

from which (4.5) follows and consequently for every (k, l) pair.

Theorem 4.3. The Jacobian matrix ∇F(v) is symmetric and positive semi-definite.

Proof. The Jacobian matrix can be represented as ∇F(v)=A+B, where A and B are |N ||S|×
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|N ||S| matrices in the form of

A =



A1 0 · · · 0

0 A2 · · · 0

...
...

. . .
...

0 0 · · · A|S|


, B =



B1 B1 · · · B1

B1 B1 · · · B1

...
...

. . .
...

B1 B1 · · · B1

,


where Aj is a |N | × |N | matrix with all elements equal to γ

(µj−
∑

i∈N vij)2
, and B1 is a |N | × |N |

diagonal matrix as

B1 =



1∑
j∈S v1j

0 · · · 0

0 1∑
j∈S v2j

· · · 0

...
...

. . .
...

0 0 · · · 1∑
j∈S vNj


For non-zero vector z ∈ R|N ||S|, z = (z11 · · · z|N |1, z12 · · · z|N |2, · · · · · · , z1|S| · · · z|N ||S|), we have

zTAz =
∑
j∈S

γ

(µj −
∑

i∈N vij)2
(
∑
i∈N

zij)
2 ≥ 0,

zTBz =
∑
i∈N

1∑
j∈S vij

(
∑
j∈S

zij)
2 ≥ 0,

which impliesA and B are symmetric and positive semi-definite, and hence ∇F(v) is symmetric

and positive semi-definite.

For a general variational inequality problem V I(F(v),K), where K is a feasible set of v,

if F(v) is continuously differentiable on K and the Jacobian matrix ∇F(v) is symmetric and

positive semi-definite, then there is a real valued convex function f : K 7→ R, ∇f(v) = F(v)

with v∗ the solution of V I(F(v),K) is also the solution of the mathematical programming

problem:

min f(v)

s.t. v ∈ K.
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Note that ∇F(v) is symmetric and positive semi-definite. The variational inequality problem

(4.14) thus can be formulated as the following convex optimization problem,

minv f(v)

s.t.
∑

i∈N vij ≤ µj ∀j ∈ S,∑
j∈S vij ≤ λi ∀i ∈ N, (P5)

vij ≥ 0 ∀i ∈ N, j ∈ S,

where

f(v) = −
∑
j∈S

γ ln(µj −
∑
i∈N

vij) +
∑
i∈N

∑
j∈S

(αdij + βpj − lnλi − 1 + ln
∑
j∈S

vij)vij . (4.22)

4.7 Solving the Problem

In this section, we develop several heuristic algorithms to solve our problem. Recall that the

price decision is independent of location and capacity allocation decisions. Therefore, we focus

on the latter two decisions. The problem is decomposed into two subproblems: location and

capacity allocation. That is, we first construct a procedure to search for the set of facility

locations, then we consider how much capacity to allocate to the facilities. The location and

capacity allocation algorithms are solved iteratively to find the best solution.

4.7.1 Location Algorithms

Assuming the firm’s profit can be evaluated (by the capacity allocation algorithms discussed

in the next section), we discuss three algorithms to find the best set of locations: the Descent

Algorithm, the Greedy Algorithm, and the Variable Neighborhood Search Algorithm. Note

that these location algorithms have been well developed and widely used in location literature

(see e.g., Berman and Huang (2007)).
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Descent Algorithm

This algorithm starts from an arbitrary solution set S and search for the best “neighborhood”

of S with a better set of locations. The procedure is repeated iteratively until no better

neighborhood can be found. Let R(S) be the firm’s optimal revenue if the location set is S.

Define the neighborhood of S by adding a node in N/S to S and removing another node from

S. The cardinality of such a neighborhood is |S|(|N | − |S|). The procedure of the Descent

Algorithm is as follows,

Step 0 Random locate S facilities on the network

Step 1 Check all the subsets S′ in the neighborhood of S and calculate R(S′). Find the

maximum of the revenues Rmax and subset S′
max.

Step 2 If Rmax ≥ R(S) change S to S′
max and go to step 2.

Step 3 Otherwise, the Descent algorithm terminates.

Greedy Algorithm

This algorithm starts from an empty set of locations and add one facility at a time until |S|

facilities are reached. At each iteration, it chooses the facility whose addition cause the greatest

improvement in revenue. The procedure is as follows,

Step 0 k = 0, select an initial facility jk = j0 that gives the best revenue, Sk = S0 = {j0}.

Step 1 Check all the facilities j ∈ N/Sk−1 and calculate R(Sk−1 ∪ j). Find the maximum

of these values Rmax and jkmax and let Sk = Sk−1 ∪ jkmax.

Step 2 k = k + 1, go to step 2, terminate the algorithm if k=—S—.

Variable Neighborhood Search Heuristic

Variable Neighborhood Search (VNS) is a metaheuristic that guides a local heuristic search

procedure to explore the solution space beyond local optimality (Mladenovic and Hansen, 1997).

It systematically changes neighborhoods within a local search algorithm. First, a function
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ρ(S1, S2) is defined as the number of different locations in S1 and S2, where |S1| = |S2|. For

example, if S1 = 1, 2, 3 and S2 = 2, 3, 4, then ρ(S1, S2) = 1. For every k = 1, 2 · · · ,M , define

the kth neighborhood of S as

Nk(S) = {Y : ρ(S, Y ) = k}.

Comparing to local search algorithms, which are usually 1-opt procedures, VNS does not

stop at the N1(S). Suppose S is the current solution, VNS randomly chooses a solution, say

S′ from N1(S) and runs a local search (e.g., descent algorithm) in N1(S
′). If there is no

improvement, VNS randomly looks for another starting point from N2(S) and runs a new local

search, and so on. If VNS finds an improved solution, this solution will be used as the new

current solution. A new iteration will start until some stopping condition is met. The procedure

can be stated as follows:

Step 0 Find an initial solution S. Set the current best solution S∗ = S and k = 1.

Step 1 Randomly choose a solution S′ from Nk(S
∗).

Step 2 Call a local search algorithm based on S′.

Step 3 If k ≤ M and the returned solution from step 2, S
′′
is not better than S∗, set

k = k+1 and go back to step 1 unless the iteration limit is reached. If k = |S| and the returned

solution of step 2, S
′′
is not better than S∗, set k = 1 and go back to step 1 unless the iteration

limit is reached. Otherwise set S∗ = S
′′
and k = 1 and go back to step 1.

From the procedures of the three algorithms, we can see that the Greedy algorithm needs

less computation effort than the Descent Algorithm. Variable Neighborhood Search Algorithms

has an advantage of finding global optimal locations. We will compare the performance of these

three algorithms later in the numerical experiments.

4.7.2 Capacity Allocation Algorithms

In this section, we present two algorithms to solve the lower level capacity allocation problem

when the locations of the facilities are known. Recall that customers choose the facilities for
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service to maximum their utilities. A customer may not choose the closest facility for service,

but choose a facility with longer travel distance to avoid congestion. Customers at the same

node may split their flows to different facilities as long as they can obtain the same utility.

We use the properties of the optimal solutions in Section 4.6 to develop the algorithms: User

Equilibrium Heuristic 1 (UEH1)and User Equilibrium Heuristic 2 (UEH2). UEH1 attempts

to find the optimal capacity by considering customers’ equilibrium behavior iteratively. UEH2

assumes that customers visit the closest assignment and allocate capacity according to this

assignment.

User Equilibrium Heuristic 1

Use one of the location algorithms, for any fixed location S, let pj = 1/β + C,∀j ∈ S, run the

following algorithms:

Step 0 Initialize: Assume closest visit. Let Nj be the set of nodes that visit facility j. Set

k = 0 and let

µ0j =
2γL0

j (x) + βγC

4L0
j (x)

2
, ∀j ∈ S,

where

L0
j (x) = −LambertW

(
− 1

2

(
βγC exp(1 + βC)∑
i∈Nj

λi exp(−αdij)

) 1
2
)
, ∀j ∈ S.

Step 1 Given µk. Calculate the resulting equilibrium flow vk by P5

min
v

−
∑
j∈S

γ ln(µkj −
∑
i∈N

vij) +
∑
i∈N

∑
j∈S

(αdij + C − lnλi + ln(
∑
j∈S

vij))vij

s.t.
∑

i∈N vij ≤ µj , ∀j ∈ S,∑
j∈S vij ≤ λi, ∀i ∈ N,

vij ≥ 0, ∀i ∈ N, j ∈ S.
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Evaluate waiting time and the original demand distribution,

wk
j =

1

ukj −
∑

i∈N vkij
,

ykij =
vkij

λi exp(−αdij − βp∗ − γwk
j )
.

Step 2 Given vkij , w
k
j , calculate

µk+1
j =

2γLk+1
j (S) + βγC

4Lk+1
j (S)2

, ∀j ∈ S,

where

Lk+1
j (S) = −LambertW

(
− 1

2

(
βγC exp(1 + βC)∑
i∈Nj

ykijλi exp(−αdij)

) 1
2
)
, ∀j ∈ S.

Step 3 Repeat Step 1 and Step 2. Stop if ∥µk+1 − µk∥ ≤ ϵ.

User Equilibrium Heuristic 2

Use one of the location algorithms, for any fixed location S, let pj = 1/β + C,∀j ∈ S, run the

following algorithms:

Step 0 Initialize: Assume closest visit. Let Nj be the set of nodes that visit facility j. Set

k = 0 and let

µ∗j =
2γL∗

j (S) + βγC

4L∗
j (S)

2
, ∀j ∈ S,

where

L∗
j (S) = −LambertW

(
− 1

2

(
βγC exp(1 + βC)∑
i∈Nj

λi exp(−αdij)

) 1
2
)
, ∀j ∈ S.

Step 1 Given µ∗. Calculate the resulting equilibrium flow v∗ by P5, then stop.
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4.7.3 An Uncapacitated Facility Location Problem (UFLP) Formulation

Uncapacitated Facility Location Problem (UFLP) is one of the most commonly used location

models. In a classical UFLP, facilities are placed among M possible sites with the objective

of minimizing the total travel distance for satisfying all demand at N given locations (see e.g.,

Mirchandani and Francis (1990)). In this section we present an approach using the UFLP

formulation. We assume that locations are made first through the UFLP formulation and the

capacity allocation decisions are made after the locations of the facility are determined. The

UFLP formulation of our location problem can be stated as,

maxx,y
∑
i∈N

∑
j∈M

p∗ ∗ yij exp(−αdij − βp∗)

s.t.
∑
j∈M

xj = |S|, (P6)

∑
j∈M

yij = 1 ∀i ∈ N,

yij ≤ xj ∀i ∈ N, j ∈M,

xj , yij = 0, 1 ∀i ∈ N, j ∈M.

Then, we can use the capacity allocation algorithms UEH1 and UEH2 in Section 4.7.2 to

obtain the optimal capacities. We denote the algorithms as UFLP1 (UFLP+UEH1) and UFLP2

(UFLP+UEH2) respectively.

Note that it can be verified that P6 provides an integer solution and customers are assigned

to the closest facility.

4.7.4 An Upper Bound and Lower Bound of Customer Flows

We present an upper bound and a lower bound of customer flows by considering two extreme

conditions. If there are sufficient supply of capacities such that there is no need to wait for

service, i.e., customers’ waiting time is zero, the maximal total demand would be,

ΛUB =
∑
j∈M

λi exp(−αdij − βpj). (4.23)
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On the other hand, if the congestion is so high such that the systems cannot be in equilibrium,

the minimal total demand would be,

ΛLB =
∑
j∈M

λi exp(−αdij − βpj − 2), (4.24)

where γ ∗ w > 2 as in (4.12).

4.8 An Example: Is Visiting the Closest Facility Optimal?

We assume that customers’ behavior when visiting their closest facilities for service is quite

reasonable and practical when there is no congestion and an uniform price is used. For example,

the UFLP formulation inP6 gives an optimal solution that customers visit their closest facilities.

When there is congestion in the system, however, the answer is not immediately obvious.

Customers’ choice of where to go for service is no longer independent due to the presence of

congestions. In this section, we use an example to gain the insight and show that visiting the

closest facility actually is not necessarily optimal for both the System Optimization model and

the User Equilibrium model.

Consider a firm operating on a 3-node network as shown in Figure 4.1. The travel distances

between nodes are d12 = 1, d31 = 1, and d32 = 2. The maximum demand rates at each node

are λ1 = 1, λ2 = 2, λ3 = 3. The demands’elasticity to price and congestion time is β = 0.2

and γ = 1 respectively. The demands’ elasticity to travel distance varies for analytical purpose.

The unit capacity cost is C = 0.5. We assume that the firm has decided to locate one facility

at node 1 and another one at node 2. Let y31, 1− y31 be the proportion of flows at node 3 that

go to node 1 and node 2 respectively. We next find optimal flows y31, and 1− y31 and show its

impact on the firms’s revenue.

The optimal price is 5.5. Given y31, and 1 − y31, the firm’s optimal capacity and revenue,

for both System Optimization and User Optimization, are as follows,

µ∗j =
2Lj(y) + 0.1

4Lj(y)2
, j = 1, 2,
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Figure 4.1: A 3-node network - multiple facility

and

R∗ =

2∑
j=1

0.5(1− 2Lj(y))

4Lj(y)2
,

where

L∗
1(y) = −LambertW

(
−1

2

(
0.1 exp(1.1)

λ1 + λ3y31 exp(−α)

) 1
2

)
,

L∗
2(y) = −LambertW

(
−1

2

(
0.1 exp(1.1)

λ2 + λ3(1− y31) exp(−2α)

) 1
2

)
.

System Optimization We plot the firm’s revenue with respect to flow y31 in Figure 4.2

under various travel distance elasticities. We use SO to denote the system optimal solutions

in the figure. We can see from Figure 4.2 that y∗31 = 0 at α = 0.01 and 0.06, and y∗31 = 1

at α = 0.11 and 0.16. Obviously, assigning customers to the closest facility is not necessarily

optimal. Depending upon customers’ elasticity to the travel distance and waiting time, assigning

customers at node 3 to their closest facility at node 1 provides higher revenue when the elasticity

to demand is relatively large, (α = 0.11, 0.16). When the waiting time factor dominates, i.e.
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customers are more sensitive to the waiting time than travel distance (α = 0.01, 0.06), pooling

customers together to the higher demand node 2 provides higher profit.

Figure 4.2: Profit vs. flow distribution
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User Equilibrium When customers have the flexibility to choose where to go for service,

they will try to maximize their profit. In this case, all customers at node 3, no matter which

facility to visit, have the same utility in equilibrium. Therefore,

α ∗ d31 + γw∗
1 = α ∗ d32 + γw∗

2,

where

w∗
j =

2

γ
L∗
j (y31).

Solving the above equation at α = 0.01, 0.06, 0.11 and 0.16, we have y31 = 0.6455, 0.5406, 0.4414

and 0.3520 respectively (shown in Figure 4.2 as UEs).

As expected, We can see that the revenues of the user equilibrium solutions are lower than

the revenues from the the system optimal solutions. It is also interesting to see that in the User

Equilibrium model, customers split their flows to node 1 and node 2.

Note that the user equilibrium flow is not unique given fixed locations and capacities.

In this example, when α = 0, any flow that results in the same total flow at node 1 and

node 2 is a user equilibrium flow. For example (y31 = 2, y32 = 1, and y12 = y21 = 0) and

101



www.manaraa.com

(y31 = 1, y32 = 2, y12 = 0, and y21 = 1) will both be user optimal if we allocate the same

capacity at the two nodes.

4.9 Computational Experiments

To test the heuristic algorithms proposed and investigate their managerial implications, we

conduct extensive experiments under different demand elasticity scenarios and problems sizes.

The number of nodes was set to 10, 20, 30, 50, 200, and 300. The number of facilities was set to

2, 3, 4, 5, 8, and 10. All runs are performed on a Pentium 4 PC equipped with 1GHZ processor

and 1GB RAM.

All procedures were coded in C++ and MATLAB. The network used in the experiments were

generated randomly. The length of each link was generated over the interval (0, 1) uniformly. All

demand weights were generated randomly over the interval (10, 50). For all problem instances,

we ensured that no two instances shared a common random seed.

Two set of experiments are conducted: capacity allocation with fixed location problems and

location and capacity allocation problems. In the instances of capacity allocation problems,

we use KNITRO solver as a benchmark to evaluate the quality of our heuristic solutions.

KNITRO is one of the commercial softwares that are capable of solving nonlinear complimentary

optimization problems.

The following two performance measures were used in the experiments.

1. Relative error (RE): (R∗ − R)/R∗, where R is the objective function value generated by

the heuristics and R∗ is the optimal objective value from KNITRO.

2. Heuristic gap (HG): (Rmax −R)/Rmax, where Rmax is the best solution obtained among

the heuristics.

4.9.1 Capacity Allocation with Fixed Locations

Tables 4.1 to 4.3 show the REs from the capacity allocation algorithms with the locations of

the facilities being fixed, under different network sizes and customer elasticities. Two set of

customer elasticities are used: (α = 0.1, γ = 0.3) is for the cases that customers’ sensitivities
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to travel distance and waiting time is similar; and (α = 0.001, γ = 0.3) is for the cases that

customers are extremely sensitive to waiting time. The optimal solution of KNITRO is obtained

by starting from the best solution obtained from UEH1 and UEH2.

We have the following observations from our computational experiments:

1. When customers are not very sensitive to waiting time, or are more sensitive to travel

distances than waiting times, both UEH1 and UEH2 provide good solutions that are close

to the results from KNITRO.

2. When customers are very sensitive to waiting time, UEH1 provides a better solution than

UEH2. For example, in Table 4.1(b), the REs of UEH1 are all quite small, but the REs

of UEH2 range from 0.1279 to 0.4572.

3. When the number of facilities on the network increases, REs of UEH2 tend to increase.

4. The running times of UEH1 and UEH2 is much shorter than that of KNITRO. However,

the running time of UEH1 is longer than UEH2.

These observations provide important managerial insights. Recall that UEH1 finds the optimal

capacity by iteratively taking into account customers equilibrium behaviors, and UEH2 finds the

optimal capacity by assuming that customers visit closest facility for service. When customers

are more sensitive to travel distance than waiting time, they tend to choose the closest facility

for service. Thus UEH2, which is based on closest assignment, provides solutions as good as

UEH1. However, when customers are highly sensitive to waiting time, assuming that they

visit the closest facilities is apparently not sufficient to reflect their true behaviors. UEH1 thus

performs much better than UEH2.

We also observe that KNITRO gives good solutions within a reasonable time when the

locations of the facilities are fixed and the network is small (|N | ≤ 50). When the network is

relatively large (|N | ≥ 100), the running time of KNITRO increases greatly, to the extend of

2000 seconds by our experiences.
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Table 4.1: Capacity allocation with fixed locations for |N | = 10, 20, 30

|N | |S| REUEH1 TimeUEH1 REUEH2 TimeUEH2 TimeKNITRO

10 2 0.0000 0.01 0.0000 0.02 1.03
10 3 0.0018 0.03 0.0021 0.06 0.17
10 4 0.0009 0.01 0.0000 0.02 0.23
10 5 0.0031 0.73 0.0123 0.17 0.32
20 2 0.0000 0.02 0.0000 0.07 0.20
20 3 0.0006 0.06 0.0007 0.08 0.28
20 4 0.0001 0.31 0.0001 0.18 0.81
20 5 0.0005 0.10 0.0007 0.09 1.19
30 2 0.0002 0.76 0.0006 0.23 1.05
30 3 0.0000 0.03 0.0000 0.05 0.56
30 4 0.0000 1.75 0.0004 0.20 1.03
30 5 0.0001 0.29 0.0001 0.20 1.76

(a) α = 0.1, γ = 0.3;

|N | |S| REUEH1 TimeUEH1 REUEH2 TimeUEH2 TimeKNITRO

10 2 0.0066 0.38 0.1279 0.00 0.37
10 3 0.0091 1.05 0.2086 0.02 0.88
10 4 0.0099 0.64 0.3137 0.03 0.05
10 5 0.0099 0.20 0.3423 0.02 0.04
20 2 0.0013 0.11 0.1133 0.03 1.74
20 3 0.0060 1.05 0.2449 0.03 0.97
20 4 0.0006 2.92 0.3199 0.05 1.08
20 5 0.0001 59.77 0.4447 0.05 0.66
30 2 0.0006 1.48 0.1057 0.02 1.78
30 3 0.0006 1.42 0.2193 0.05 1.53
30 4 0.0196 2.73 0.3347 0.05 0.67
30 5 0.0008 7.19 0.4572 0.06 0.58

(b) α = 0.001, γ = 0.3.
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Table 4.2: Capacity allocation with fixed locations for |N | = 50, 80, 100

|N | |S| REUEH1 TimeUEH1 REUEH2 TimeUEH2 TimeKNITRO

50 2 0.0000 0.07 0.0000 0.14 4.18
50 3 0.0000 0.38 0.0000 0.20 4.03
50 4 0.0000 3.37 0.0007 0.30 4.18
50 5 0.0000 5.66 0.0001 0.29 6.04
50 8 0.0000 4.84 0.0003 0.53 9.54
50 10 0.0001 1.80 0.0000 0.67 44.56
80 2 0.0000 2.21 0.0001 0.22 3.48
80 3 0.0000 2.04 0.0003 0.31 8.18
80 4 0.0000 4.22 0.0003 0.36 11.99
80 5 0.0000 6.83 0.0008 0.44 19.46
80 8 0.0000 6.62 0.0002 0.74 51.24
80 10 0.0008 27.47 0.0023 1.07 117.70
100 2 0.0000 0.11 0.0000 0.09 4.94
100 3 0.0000 4.62 0.0001 0.37 17.95
100 4 0.0000 2.06 0.0001 0.45 44.28
100 5 0.0001 4.30 0.0006 0.57 36.02
100 8 0.0001 10.51 0.0004 0.89 115.82
100 10 0.0000 31.47 0.0009 1.42 254.77

(a) α = 0.1, γ = 0.3;

|N | |S| REUEH1 TimeUEH1 REUEH2 TimeUEH2 TimeKNITRO

50 2 0.0003 0.27 0.1280 0.05 4.94
50 3 0.0001 0.30 0.2295 0.06 4.27
50 4 0.0006 3.52 0.3426 0.09 4.60
50 5 0.0007 0.58 0.4756 0.11 6.16
50 8 0.0003 19.23 0.8223 0.30 11.26
50 10 0.0002 2.31 0.9245 0.38 50.80
80 2 0.0006 0.39 0.1397 0.08 3.55
80 3 0.0003 0.45 0.2177 0.09 9.49
80 4 0.0001 0.72 0.3451 0.14 13.19
80 5 0.0002 0.89 0.3747 0.17 22.58
80 8 0.0006 6.34 0.4068 0.49 52.26
80 10 0.0000 3.05 0.4088 0.59 138.88
100 2 0.0005 0.39 0.1328 0.08 5.73
100 3 0.0010 0.69 0.2187 0.13 21.18
100 4 0.0002 0.72 0.3259 0.17 48.71
100 5 0.0008 1.11 0.3643 0.20 36.74
100 8 0.0010 15.75 0.4093 0.59 134.35
100 10 0.0006 6.84 0.4267 0.73 280.25

(b) α = 0.001, γ = 0.3.
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Table 4.3: Capacity allocation with fixed locations for |N | = 200, 300

|N | |S| REUEH1 TimeUEH1 REUEH2 TimeUEH2 TimeKNITRO

200 2 0.0000 1.27 0.0000 0.34 94.25
200 3 0.0000 1.78 0.0000 0.44 121.41
200 4 0.0001 8.70 0.0002 0.59 407.52
200 5 0.0000 12.81 0.0001 0.72 1483.50
200 8 0.0001 10.14 0.0002 1.22 400.37
200 10 0.0005 13.66 0.0000 1.45 40.28
300 2 0.0000 1.53 0.0000 0.45 276.41
300 3 0.0002 3.25 0.0001 0.61 564.12
300 4 0.0002 7.36 0.0002 0.80 281.02
300 5 0.0001 7.84 0.0000 0.98 69.24
300 8 0.0003 36.80 0.0000 1.66 119.97
300 10 0.0003 48.44 0.0000 2.20 168.52

(a) α = 0.1, γ = 0.3;

|N | |S| REUEH1 TimeUEH1 REUEH2 TimeUEH2 TimeKNITRO

200 2 0.0007 0.77 0.1191 0.17 111.22
200 3 0.0003 1.11 0.2581 0.27 143.26
200 4 0.0010 1.45 0.3405 0.34 431.97
200 5 0.0001 1.78 0.3688 0.42 1602.18
200 8 0.0002 9.81 0.3948 1.17 456.42
200 10 0.0001 7.58 0.4062 1.47 43.50
300 2 0.0008 1.27 0.1375 0.31 298.52
300 3 0.0005 1.81 0.2521 0.45 597.97
300 4 0.0009 2.36 0.2537 0.58 309.12
300 5 0.0001 2.99 0.3686 0.72 70.62
300 8 0.0003 20.61 0.4890 2.00 134.37
300 10 0.0001 71.70 0.5513 2.50 171.89

(b) α = 0.001, γ = 0.3.

4.9.2 Location and Capacity Allocation

In this section, we show the numerical works of finding the joint optimal locations and capacity

allocations by using the algorithms proposed (recall that price decision is independent of the

location and capacity decisions).

Tables 4.4, 4.5, and 4.6 show the results for problems under various network sizes and

customer elasticities. Table 4.4 is for some small networks. The REs are obtained by comparing

the solutions of our algorithms to the solution obtained from KNITRO. Since KNITRO does not

work for the discrete variables, we enumerate all sets of locations to obtain the optimal revenue.

Tables 4.5 and 4.6 are for medium to large networks. We use HG as a measurement of the
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solution quality in these cases, as enumerating locations from KNITRO is practically impossible.

We test two demand elasticity scenarios for all cases: (α = 0.1, β = 0.3), where customers

are sensitive to travel distances and waiting time in approximately the same magnitude, and

(α = 0.001, β = 0.3), where customers are more sensitive to waiting time than travel distances.

We observe that in all cases, DA+UEH2, GA+UEH2, UFLP1, and UFLP2 run faster than

DA+UEH1, GA+UEH1, and VNS. For a network of 30 nodes and 5 facilities, the completion

takes just a few seconds for DA+UEH2, GA+UEH2, UFLP1, and UFLP2. It takes a few

minutes for DA+UEH1, GA+UEH1, and VNS. The computation time increases greatly for

DA+UEH1 and VNS algorithm as the network size increases. For example, in Table 4.6 (a), for

a network of 200 nodes and 8 facilities, it takes DA+UEH1 and VNS over 8 hours to complete.

The time to complete DA+UEH2 and GA+UEH2 is within an hour.

In addition to the running time, we also have the following observation about the solution

quality of these algorithms:

1. The location algorithms combined with UEH1 (DA+UEH1, GA+UEH1) generally pro-

vide better solutions than the location algorithms combined with UEH2 (DA+UEH2,

GA+UEH2). This patterns can be found in all the tables.

2. For cases with (α = 0.1, β = 0.3), all algorithms provide good solutions, though some of

them take a longer time than others.

3. For cases with (α = 0.001, β = 0.3), the algorithms using UEH1 generate much better

solutions than the algorithms using UEH2. For example, in Table 4.5 (b), UGs obtained

from DA+UEH2 and GA+UEH2 range from 1% to 12%, while UGs are less than 0.1%

in Table 4.5 (a).

4. UFLP1 and UFLP2 give solutions as good as all other algorithms when (α = 0.1, β =

0.3). However, for cases with (α = 0.001, β = 0.3), even UFLP1 does not provide good

solutions for some cases, for example in Table 4.4 (b), for cases (|N | = 10, |S| = 3),

(|N | = 20, |S| = 4), and (|N | = 30, |S| = 5), the UGs of UFLP1 are 24%, 16% and

14% respectively. As expected, UFLP2 does not provide good solution for all cases with

(α = 0.001, β = 0.3).
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These observations provide us important guidance in how to decide the price, location and

capacity decisions when designing a service network. Our algorithms can be classified into two

categories: (1) DA+UEH1, GA+UEH1, VNS make combined location and capacity allocation

decisions with consideration of customers’ reaction; and (2) DA+UEH2 and GA+UEH2 though

jointly optimize location and capacity, ignore customers’ reaction when allocating capacities.

UFLP1 considers customer reaction when allocation capacities, however the location deci-

sions was made by assuming that customers visit the closest facility. UFLP2 determines the

location and capacity separately and assume that customers visit closest capacities for both

decisions.

Therefore, in a network where customers are not very sensitive to the waiting time, the

assumption of visiting the closest facility seems reasonable, so all the algorithms produce good

quality solutions. However, when customers are very sensitive to the waiting time, they may

redistribute their flows across facilities to avoid congestions. In this case the algorithms based

on closest assignment is not sufficient to obtain a good solution.
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4.9.3 Sensitivity Analysis

In this section we study the effect of customers elasticities to travel distance and waiting time

on the performance of the heuristic algorithms. We vary customers’ elasticity parameters α

and γ with all other network parameters being fixed and compare the heuristic gaps among the

algorithms. Tables 4.7 and 4.8 show the results of a 10 node 3 facility network. In Table 4.7,

customers are roughly equally sensitive to the travel distance and waiting time; In Table 4.8,

customers are more sensitive to waiting time than travel distance.

We have the following observations from Tables 4.7 and 4.8:

1. When customers are more sensitive to travel distances than waiting times, i.e., the ratio α

to γ is large, all algorithms work well. As shown in Table 4.7, the algorithms give almost

the same solution for most cases and the maximal HG is just 9.38%.

2. When customers are more sensitive to waiting times than travel distances, i.e., the ratio

α to γ is small, DA+UEH1, VNS and UFLP1 work better than DA+UEH2, GA+UEH2

and UFLP2. Table 4.8 shows that the HG of GA+UHE2 ranges from 0.00% to 27.42%

and it can be as high as 34.60% for UFLP2.

These observations are consistent with the numerical experiments in the previous section.

Table 4.7: Sensitivity to customers’ elasticity -HG (%)

(α, γ) DA+ UEH1 DA+ UEH2 GA+ UEH1 GA+ UEH2 V NS UFLP1 UFLP2

(0.1, 0.1) 0.84 0.84 0.09 0.11 0.09 0.00 0.00
(0.1, 0.3) 1.02 1.02 2.18 0.00 0.00 0.00 0.00
(0.1, 0.5) 0.12 0.14 0.12 0.14 0.12 0.00 0.00
(0.1, 0.8) 0.00 0.00 1.07 1.07 0.00 0.00 0.00
(0.3, 0.1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.3, 0.3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.3, 0.5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.3, 0.8) 0.00 0.00 0.20 3.79 0.00 0.00 0.00
(0.5, 0.1) 0.57 0.57 9.38 0.57 0.57 0.00 0.00
(0.5, 0.3) 2.11 1.17 2.11 1.17 2.11 0.00 0.00
(0.5, 0.5) 0.00 0.00 1.05 0.00 0.00 0.00 0.23
(0.5, 0.8) 0.00 0.00 0.00 0.00 0.00 0.00 0.34
(0.8, 0.1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.8, 0.3) 7.82 7.82 7.82 7.82 7.82 0.00 0.00
(0.8, 0.5) 4.73 4.73 4.73 8.69 4.73 0.00 0.00
(0.8, 0.8) 5.91 8.08 5.90 8.08 0.00 0.00 0.00
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Table 4.8: Sensitivity to customers’ elasticity -HG (%)

(α, γ) DA+ UEH1 DA+ UEH2 GA+ UEH1 GA+ UEH2 V NS UFLP1 UFLP2

(0.001, 0.1) 0.00 0.00 0.00 0.00 0.00 0.36 0.01
(0.001, 0.5) 0.06 0.00 0.06 0.00 0.30 0.30 0.00
(0.001, 1) 0.00 2.00 0.00 2.00 0.00 0.00 2.00
(0.001, 5) 0.00 14.08 0.00 14.08 0.00 0.00 14.07
(0.001, 10) 0.00 22.40 35.47 27.42 0.00 0.02 30.30
(0.01, 0.1) 0.00 0.00 0.05 0.05 0.00 0.00 0.00
(0.01, 0.5) 0.27 0.00 0.45 0.00 0.45 0.27 0.12
(0.01, 1) 0.00 0.96 0.62 1.20 0.00 0.62 1.88
(0.01, 5) 0.00 8.90 0.00 8.90 0.00 0.00 13.20
(0.01, 10) 0.00 20.82 0.00 21.79 0.29 0.00 25.09
(0.1, 0.1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.1, 0.5) 0.00 0.02 0.00 0.02 0.00 0.00 0.02
(0.1, 1) 0.25 0.00 0.67 0.67 0.25 0.67 0.67
(0.1, 5) 0.00 6.89 0.00 6.89 0.00 0.00 7.16
(0.1, 10) 0.00 18.07 32.56 19.05 0.39 9.45 19.08
(0.5, 0.1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.5, 0.5) 0.00 1.02 0.00 1.02 0.00 0.00 1.02
(0.5, 1) 0.00 0.00 0.00 0.00 0.00 2.02 2.02
(0.5, 5) 0.00 3.75 0.00 3.75 2.80 2.80 3.75
(0.5, 10) 0.00 12.24 0.00 12.24 0.00 0.00 34.60
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4.10 Conclusions and Future Research

We studied the problem of designing a multi-facility service network in the presence of conges-

tions and demand elasticities. The objective is to find the locations of the facilities, to decide

the price to charge for service and the capacity level to allocate so that the service firm’s revenue

is maximized. Two models are proposed: a system optimization model and a user equilibrium

model. In the system optimization model, customers cooperate with the firm to maximize the

firm’s revenue. In the user equilibrium model, customers establish equilibrium flow to maximize

their own utilities.

We first show through an example that the customers may not visit their closest facilities

for service in both the system optimization model and the user equilibrium model, though the

system optimization model generates higher revenue. Our study further focus on solving the

user optimization model. The properties of the optimal solutions are analyzed. We show that

a uniform pricing strategy is optimal and is independent of the location and capacity decisions.

When the locations of the facilities, the price charged for service and the capacities are known,

we show that customers equilibrium flow problems can be solved by a convex optimization

problem via the variational inequality approach. We developed several algorithms to solve the

user equilibrium model.

Our numerical experiments suggest that customers’ elasticities play a key role in the location

and capacity allocation decisions. When the customers value the proximity of the service as

much important as the waiting time for service, the price, location and capacity decisions can

be made separately. When the customers are very sensitive to the waiting time, however,

the separate decision making is not sufficient enough. As indicated by our computational

experiments, capacity allocation and location decisions should be jointly optimized in this case.

Several extensions to our modeling frame work are worth further investigate. First, our

model and results are based on a specific demand elasticity function and linear utility function.

So, it would be interesting to see whether the results can be extended to other demand elasticity

functions and more general utility functions. Second, the demand elasticities are assumed to be

homogeneous to all customers. One can relax this assumption and consider cases that customers
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residing at different nodes have different elasticities and see if the results are different from our

observations. Finally, the competition is considered implicitly by the elasticity of the demand in

our model. Considering pre-existing competitors on the network and model the loss of demand

explicitly to these competitors would also be an interesting topic.
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Appendices
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Appendix A

Wardrop Equilibrium and Nash

Equilibrium

The customer equilibrium considered in this research is a type of Wardrop equilibrium. In this

section, we briefly discuss the difference between the Wardrop and Nash equilibria. We refer

interested readers to Haurie and Marcotte (1985) for a detailed discussion.

The Wardrop equilibrium was first introduced in Wardrop (1952). Wardrop’s first principle

for traffic equilibra states: “The journey times in all routes actually used are equal and less than

those which would be experienced by a single vehicle on any unused route.” It is equivalent to the

definition of customer equilibrium. In our context, we assume there are a very large number of

infinitesimal customers and customers are in Wardrop equilibrium if no customer can increase

his utility by switching from his current demand pattern to another one. The effect of one

individual customer, when unilaterally changes his choice from a particular demand pattern to

another one, is infinitesimal.

Nash equilibrium was defined in Nash (1951). In terms of network flows, a flow pattern is in

Nash equilibrium if no individual customers on the network can change to a less costly route.

The difference between a Wardrop equilibrium and a Nash equilibrium is that when the

players in a Nash game are discrete and finite in number, a Nash equilibrium can be achieved

without the costs of all used routes being equal, while in a Wardrop equilibrium the costs of

all used routes must be equal. Wardrop’s equilibrium represents a limiting case of an infinite
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number of infinitesimal players in the Nash equilibrium.

Since the number of customers in our study is large, we use a Wardrop equilibrium, which

treats individual user contributions to the costs as infinitesimal.
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Appendix B

Existence and Uniqueness of

Customer Equilibrium Flow

In this section, we discuss the existence and uniqueness of the equilibrium using variational

inequality method. We refer readers to Nagurney (1999) for the variational inequality problem

in details. Let x = (x1; · · · ;xM ) be the column vector of global customer-demand pattern

assignment vector with cardinality of
∑

m∈M Sm. We begin with some fundamental definitions.

Definition B.1. (Variational Inequality Problem) The finite-dimensional variational inequality

problem V I(F,K), is to determine a vector x∗ ∈ K ⊂ Rn, such that

⟨F (x∗)′,x− x∗⟩ ≥ 0, ∀x ∈ K,

where F is a given continuous function from K to Rn, K is a given closed convex set, and ⟨·, ·⟩

denotes the inner product in Rn, where Rn in the n-dimensional Euclidean space. For example,

⟨(1, 2), (3, 4)⟩ = 11.

Definition B.2. (Monotonicity) F (x) is monotone on K if

⟨(F (x1)− F (x2))′,x1 − x2⟩ ≥ 0, ∀x1,x2 ∈ K.

For example, any additive, increasing or decreasing function F (x) is monotone.
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Definition B.3. (Strict Monotonicity) F (x) is strictly monotone on K if

⟨(F (x1)− F (x2))′,x1 − x2⟩ > 0, ∀x1,x2 ∈ K,x1 ̸= x2.

Definition B.4. (Strong Monotonicity) F (x) is strongly monotone on K if for some α > 0

⟨(F (x1)− F (x2))′,x1 − x2⟩ ≥ α ∥ x1 − x2 ∥2, ∀x1,x2 ∈ K.

Let um = (um1 , · · · , umSm
) be the column vector of utilities for class-m customers with cardi-

nality of Sm. Let u = (u1; · · · ;uM ) be the column vector of global customer utilities stacked

by its natural dimensions with cardinality of
∑

m∈M Sm. Then we can formulate (2.4) as a

variational inequality problem (Smith, 1979). Using similar proof, we have

Theorem B.1. Smith (1979) x∗ ∈ K is a customer equilibrium flow if and only if it solves the

following variational inequality problem,

⟨u(x∗)′,x− x∗⟩ ≤ 0, ∀x ∈ K (B.1)

Proof. Let x∗ satisfies the condition (2.4) for a Wardrop equilibrium, and let u(x∗) be the

customer utilities determined by x∗. Regard the customers utilities as fixed. Because x∗

satisfies (2.4) and so only best utilities path are used, total utilities will be reduced by any

change of path. Therefore any other path x ∈ K has total utilities at most as great as x∗ which

uses best utility pathes, it then follows that the total utilities in vector form:

u(x∗)′ · x ≤ u(x∗)′ · x∗,∀x ∈ K (B.2)

Conversely, suppose that (2.4) is not satisfied. Then there is a xms such that

xms > 0 and ums (x∗) < umt (x∗) (B.3)

Moving the flow xms along path s to the better utility path t will improve the total utility by
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umt (x∗)xms − ums (x∗)x∗ms > 0. Thus if the resulting flow is x,

u(x∗)′ · x > u(x∗)′ · x∗,∀x ∈ K (B.4)

in which case (B.4) or equivalently (B.3) is not satisfied. We have shown that if (2.4) is satisfied

then (B.3) is satisfied. We have also shown that if (2.4) is not satisfied then (B.3) is not satisfied.

Therefore (2.4) and (B.3) are equivalent.

The following two propositions follow directly from the classical variational inequality the-

orem in (Nagurney, 1999):

Proposition B.1. If −u(x) is strictly monotone, then the equilibrium is unique, if one exists.

Proposition B.2. If −u(x) is strongly monotone, then there exists a unique equilibrium.

Let zm = Amxm, where zmt denotes the number of orders from class-m customers at time t.

Thus y =
∑

m∈M zm. Let z = (z1; · · · ; zM ). Let wm be a T dimensional vector of congestion

cost for class-m customers, where wm
t denotes the congestion cost from class-m customers at

time t. Let w = (w1; · · · ;wM ).

Proposition B.3. −u(x) is monotone(strictly monotone,strongly monotone) if and only if

w(z)is monotone(strictly monotone,strongly monotone).

Proof. Suppose that x ∈ K, x̂ ∈ K and x ̸= x̂, to show that −u(x) is monotone, we need to

show that

⟨(u(x)− u(x̂))′,x− x̂⟩ ≤ 0.

Let δmts be the (t,s) element of matrix Am. ums (x) can be written as

ums (x) = vms − p̄mlm −
∑
t∈T

p̃tδ
m
ts −

∑
t∈T

wm
t (y)δmts .
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The inner product can be expressed as

∑
m∈M

∑
s∈Sm

(ums (x)− ums (x̂))(xms − x̂ms )

=
∑
m∈M

∑
s∈Sm

((
vms − p̄mlm −

∑
t∈T

p̃tδ
m
ts −

∑
t∈T

wm
t (y)δmts

)
−
(
vms − p̄mlm −

∑
t∈T

p̃tδ
m
ts −

∑
t∈T

wm
t (ŷ)δmts

))
(xms − x̂ms )

=
∑
m∈M

∑
s∈Sm

(∑
t∈T

(−wm
t (y) + wm

t (ŷ))δmts

)
(xms − x̂ms )

=
∑
m∈M

∑
t∈T

(−wm
t (y) + wm

t (ŷ))
∑
s∈Sm

δmts (x
m
s − x̂ms )

=
∑
m∈M

∑
t∈T

(−wm
t (y) + wm

t (ŷ))(zmt − ẑmt ).

Therefore we can see that −u(x) is monotone if and only if w(z) is monotone. We can show

the result of strictly monotone and strongly monotone using similar reasoning. The proof is

complete.

Note that from Propositions B.1 to B.3 we can see that while the existence and uniqueness

of the equilibrium depends on the customer’s delay cost, it is independent of price, and this is

true even for the heterogeneous delay cost cases.
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